Biobanking of Rett Syndrome and Related Disorders

NCT ID: NCT02705677

Last Updated: 2021-08-05

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

752 participants

Study Classification

OBSERVATIONAL

Study Start Date

2017-09-01

Study Completion Date

2021-07-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The overarching purpose of this study is to advance understanding of the natural history of Rett syndrome (RTT), MECP2-duplication disorder (MECP2 Dup), RTT-related disorders including CDKL5, FOXG1, and individuals with MECP2 mutations who do not have RTT. Although all these disorders are the result of specific genetic changes, there remains broad clinical variation that is not entirely accounted for by known biological factors. Additionally, clinical investigators currently do not have any biomarkers of disease status, clinical severity, or responsiveness to therapeutic intervention. To address these issues, biological materials (DNA, RNA, plasma, cell lines) will be collected from affected individuals and in some cases from unaffected family members, initial evaluation performed to identify additional biological factors contributing to disease severity, and these materials will be stored for future characterization.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

At the present time, effective treatments for RTT, MECP2 Dup, or Rett-related disorders are lacking. Investigators have made substantial progress in RTT over the past eleven years such that this study represents a narrowing of focus to mutations or duplications of the MECP2 gene and related disorders, including those with phenotypic overlap. Understanding of RTT has advanced remarkably well through the Rett Syndrome Natural History Clinical Protocol (NHS) and correspondingly advancement in the basic science realm has moved forward with equivalent success. Thus, progress in clinical and basic science has led to the establishment of clinical trials and other translational studies that hold promise for additional clinical trials in future. In the process, however, investigators became aware of additional MECP2- and RTT-related disorders that were unknown at the time the original proposal was conceived and further were impressed by the substantial clinical variability in individuals with RTT that cannot be explained by differences in mutations alone. In fact, variability among individuals with identical mutations has led investigators to search for additional explanations. At the time of the initial application (2002), just three years after the identification of the gene, MECP2, as the molecular link to RTT, investigators were not aware of the variation in clinical disorders related to MECP2 mutations or to the related but quite different MECP2 Dup. Each disorder is characterized by significant neurodevelopmental features related either to alterations in the MECP2 gene or related to phenotypes closely resembling those seen in individuals with RTT. Further, the phenotypic overlap with RTT due to mutations in CDKL5 and FOXG1 was also unexplored. The investigators propose in this new study to build on the substantial progress made in understanding both classic and variant RTT and to add these related disorders, MECP2 Dup and the Rett-related disorders including CDKL5, FOXG1, and individuals with MECP2 mutations who do not have RTT. In conjunction with the longitudinal clinical assessment performed via the natural history component, investigators will systematically collect from all willing participant's blood and isolate plasma, DNA, and RNA. All participants in the Natural History Study will be asked to contribute samples at the initial visit, whereas samples will be collected repeatedly on a subset of participants in order to look for changes over time. In order to identify factors that distinguish between affected and unaffected individuals, as well as to have the potential to characterize the heritability and potential consequences of genetic changes in families, samples will be collected from unaffected family members. Additionally, on a subset of individuals chosen because of unique clinical features skin biopsies and/or hair follicles will be collected to establish cell lines. Investigators will ask all individuals providing samples to agree to potential future whole-genome sequencing in order to be able to potentially evaluate for genetic modifiers of these diseases.

These materials will be stored at a central repository (Greenwood Genetics Laboratory). The main purpose of these samples is to serve as durable materials for future analyses, however, a set of defined analyses will be performed on all samples. For the samples collected in the Rett syndrome cohort, investigators will perform X-chromosome inactivation studies and evaluate common polymorphisms in Brain derived neurotrophic factor (BDNF) and determine the contribution of these known factors to disease severity. For MECP2 Dup cohort investigators will characterize inflammatory markers in the plasma and correlate these with clinical features. Also for MECP2 Dup cohort investigators will perform detailed genomic breakpoint and gene content analysis and correlate this with disease severity. Similar analysis of genomic breakpoints and gene content will be performed on people with FOXG1 Duplications. Finally, in a pilot study, investigators will perform metabolic profiling on people from all disorders and evaluate for metabolic features correlated with disease severity, and metabolic features common or unique between these disorders. This work will provide a durable resource for future analysis, extend understanding of genotype/phenotype correlations, identify other biological factors contributing to disease severity, as well as provide the framework for the development of biomarkers of disease state and severity.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Rett Syndrome MECP2 Duplication CDKL5 FOXG1 Disorders

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Rett syndrome

This is a biobanking project for individuals with mutations in MECP2 or meeting diagnostic criteria for classic (typical) or variant (atypical) Rett syndrome in order to identify other genetic factors such as X-chromosome inactivation or genetic background that may explain the variations noted in these individuals, including those with the same MECP2 mutation. No interventions are anticipated.

No interventions assigned to this group

MECP2 Duplication disorder

This is a biobanking project for individuals with MECP2 duplications to understand the difference in the size of the duplication and the potential impact of other genes in the duplicated segment. No interventions are anticipated.

No interventions assigned to this group

Rett-related disorders: CDKL5, FOXG1

This is a biobanking project for individuals with mutations in MECP2, CDKL5, and FOXG1 to understand the interplay of mutations in these individuals and the resultant phenotypic expression; for example, individuals with mutations in MECP2 but not meeting diagnostic criteria for Rett syndrome or individuals with mutations in CDKL5 or FOXG1 who may or may not meet diagnostic criteria for atypical Rett syndrome. No interventions are anticipated.

No interventions assigned to this group

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Individuals of both genders and of all ages, with RTT, MECP2 Dup, and, RTT-related disorders including those with mutations or deletions in CDKL5 and FOXG1 genes, or those with RTT (atypical or typical) who are mutation negative. Additionally, unaffected family members of those people who meet the disease specific criteria stated will eligible.

Exclusion Criteria

* Individuals who do not meet the above criteria will be excluded.
Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Institutes of Health (NIH)

NIH

Sponsor Role collaborator

National Center for Advancing Translational Sciences (NCATS)

NIH

Sponsor Role collaborator

Office of Rare Diseases (ORD)

NIH

Sponsor Role collaborator

Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)

NIH

Sponsor Role collaborator

National Institute of Neurological Disorders and Stroke (NINDS)

NIH

Sponsor Role collaborator

University of Alabama at Birmingham

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Alan Percy

Principal Investigator

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Jeffrey L Neul, MD, PhD

Role: STUDY_CHAIR

UCSD

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University of Alabama at Birmingham

Birmingham, Alabama, United States

Site Status

UCSF Benioff Children's Hospital Oakland

Oakland, California, United States

Site Status

University of California San Diego

San Diego, California, United States

Site Status

University of Colorado Denver

Denver, Colorado, United States

Site Status

Rush University Medical Center

Chicago, Illinois, United States

Site Status

Children's Hospital Boston

Boston, Massachusetts, United States

Site Status

Gillette Children's Specialty Healthcare

Minneapolis, Minnesota, United States

Site Status

Washington University School of Medicine and St. Louis Children's Hospital

St Louis, Missouri, United States

Site Status

Children's Hospital of Philadelphia

Philadelphia, Pennsylvania, United States

Site Status

Greenwood Genetic Center

Greenwood, South Carolina, United States

Site Status

Vanderbilt University

Nashville, Tennessee, United States

Site Status

Baylor College of Medicine

Houston, Texas, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Hagberg B, Aicardi J, Dias K, Ramos O. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome: report of 35 cases. Ann Neurol. 1983 Oct;14(4):471-9. doi: 10.1002/ana.410140412.

Reference Type BACKGROUND
PMID: 6638958 (View on PubMed)

Neul JL, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, Leonard H, Bailey ME, Schanen NC, Zappella M, Renieri A, Huppke P, Percy AK; RettSearch Consortium. Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol. 2010 Dec;68(6):944-50. doi: 10.1002/ana.22124.

Reference Type BACKGROUND
PMID: 21154482 (View on PubMed)

Neul JL, Fang P, Barrish J, Lane J, Caeg EB, Smith EO, Zoghbi H, Percy A, Glaze DG. Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology. 2008 Apr 15;70(16):1313-21. doi: 10.1212/01.wnl.0000291011.54508.aa. Epub 2008 Mar 12.

Reference Type BACKGROUND
PMID: 18337588 (View on PubMed)

Nan X, Bird A. The biological functions of the methyl-CpG-binding protein MeCP2 and its implication in Rett syndrome. Brain Dev. 2001 Dec;23 Suppl 1:S32-7. doi: 10.1016/s0387-7604(01)00333-3.

Reference Type BACKGROUND
PMID: 11738839 (View on PubMed)

Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999 Oct;23(2):185-8. doi: 10.1038/13810.

Reference Type BACKGROUND
PMID: 10508514 (View on PubMed)

Wan M, Lee SS, Zhang X, Houwink-Manville I, Song HR, Amir RE, Budden S, Naidu S, Pereira JL, Lo IF, Zoghbi HY, Schanen NC, Francke U. Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet. 1999 Dec;65(6):1520-9. doi: 10.1086/302690.

Reference Type BACKGROUND
PMID: 10577905 (View on PubMed)

Suter B, Treadwell-Deering D, Zoghbi HY, Glaze DG, Neul JL. Brief report: MECP2 mutations in people without Rett syndrome. J Autism Dev Disord. 2014 Mar;44(3):703-11. doi: 10.1007/s10803-013-1902-z.

Reference Type BACKGROUND
PMID: 23921973 (View on PubMed)

Laurvick CL, de Klerk N, Bower C, Christodoulou J, Ravine D, Ellaway C, Williamson S, Leonard H. Rett syndrome in Australia: a review of the epidemiology. J Pediatr. 2006 Mar;148(3):347-52. doi: 10.1016/j.jpeds.2005.10.037.

Reference Type BACKGROUND
PMID: 16615965 (View on PubMed)

Kerr AM, Armstrong DD, Prescott RJ, Doyle D, Kearney DL. Rett syndrome: analysis of deaths in the British survey. Eur Child Adolesc Psychiatry. 1997;6 Suppl 1:71-4.

Reference Type BACKGROUND
PMID: 9452925 (View on PubMed)

Kirby RS, Lane JB, Childers J, Skinner SA, Annese F, Barrish JO, Glaze DG, Macleod P, Percy AK. Longevity in Rett syndrome: analysis of the North American Database. J Pediatr. 2010 Jan;156(1):135-138.e1. doi: 10.1016/j.jpeds.2009.07.015.

Reference Type BACKGROUND
PMID: 19772971 (View on PubMed)

Guy J, Gan J, Selfridge J, Cobb S, Bird A. Reversal of neurological defects in a mouse model of Rett syndrome. Science. 2007 Feb 23;315(5815):1143-7. doi: 10.1126/science.1138389. Epub 2007 Feb 8.

Reference Type BACKGROUND
PMID: 17289941 (View on PubMed)

Garg SK, Lioy DT, Cheval H, McGann JC, Bissonnette JM, Murtha MJ, Foust KD, Kaspar BK, Bird A, Mandel G. Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. J Neurosci. 2013 Aug 21;33(34):13612-20. doi: 10.1523/JNEUROSCI.1854-13.2013.

Reference Type BACKGROUND
PMID: 23966684 (View on PubMed)

Chang Q, Khare G, Dani V, Nelson S, Jaenisch R. The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron. 2006 Feb 2;49(3):341-8. doi: 10.1016/j.neuron.2005.12.027.

Reference Type BACKGROUND
PMID: 16446138 (View on PubMed)

Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, Flannery R, Jaenisch R, Sur M. Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2029-34. doi: 10.1073/pnas.0812394106.

Reference Type BACKGROUND
PMID: 19208815 (View on PubMed)

Archer H, Evans J, Leonard H, Colvin L, Ravine D, Christodoulou J, Williamson S, Charman T, Bailey ME, Sampson J, de Klerk N, Clarke A. Correlation between clinical severity in patients with Rett syndrome with a p.R168X or p.T158M MECP2 mutation, and the direction and degree of skewing of X-chromosome inactivation. J Med Genet. 2007 Feb;44(2):148-52. doi: 10.1136/jmg.2006.045260. Epub 2006 Aug 11.

Reference Type BACKGROUND
PMID: 16905679 (View on PubMed)

Leonard H, Bower C. Is the girl with Rett syndrome normal at birth? Dev Med Child Neurol. 1998 Feb;40(2):115-21.

Reference Type BACKGROUND
PMID: 9489500 (View on PubMed)

Kerr AM. Early clinical signs in the Rett disorder. Neuropediatrics. 1995 Apr;26(2):67-71. doi: 10.1055/s-2007-979725.

Reference Type BACKGROUND
PMID: 7566455 (View on PubMed)

Einspieler C, Kerr AM, Prechtl HF. Abnormal general movements in girls with Rett disorder: the first four months of life. Brain Dev. 2005 Nov;27 Suppl 1:S8-S13. doi: 10.1016/j.braindev.2005.03.014. Epub 2005 Sep 21.

Reference Type BACKGROUND
PMID: 16182501 (View on PubMed)

Einspieler C, Kerr AM, Prechtl HF. Is the early development of girls with Rett disorder really normal? Pediatr Res. 2005 May;57(5 Pt 1):696-700. doi: 10.1203/01.PDR.0000155945.94249.0A. Epub 2005 Feb 17.

Reference Type BACKGROUND
PMID: 15718369 (View on PubMed)

Downs J, Bebbington A, Kaufmann WE, Leonard H. Longitudinal hand function in Rett syndrome. J Child Neurol. 2011 Mar;26(3):334-40. doi: 10.1177/0883073810381920. Epub 2010 Oct 4.

Reference Type BACKGROUND
PMID: 20921565 (View on PubMed)

Downs JA, Bebbington A, Jacoby P, Msall ME, McIlroy O, Fyfe S, Bahi-Buisson N, Kaufmann WE, Leonard H. Gross motor profile in rett syndrome as determined by video analysis. Neuropediatrics. 2008 Aug;39(4):205-10. doi: 10.1055/s-0028-1104575. Epub 2009 Jan 22.

Reference Type BACKGROUND
PMID: 19165708 (View on PubMed)

Neul, J.L. Rett Syndrome and MECP2-Related Disorders. in Autism Spectrum Disorders (eds. Amaral, D., Geschwind, D. & Dawson, G.) 776-800 (Oxford University Press, New York, 2011).

Reference Type BACKGROUND

Nectoux J, Bahi-Buisson N, Guellec I, Coste J, De Roux N, Rosas H, Tardieu M, Chelly J, Bienvenu T. The p.Val66Met polymorphism in the BDNF gene protects against early seizures in Rett syndrome. Neurology. 2008 May 27;70(22 Pt 2):2145-51. doi: 10.1212/01.wnl.0000304086.75913.b2. Epub 2008 Apr 23.

Reference Type BACKGROUND
PMID: 18434641 (View on PubMed)

Zeev BB, Bebbington A, Ho G, Leonard H, de Klerk N, Gak E, Vecsler M, Christodoulou J. The common BDNF polymorphism may be a modifier of disease severity in Rett syndrome. Neurology. 2009 Apr 7;72(14):1242-7. doi: 10.1212/01.wnl.0000345664.72220.6a.

Reference Type BACKGROUND
PMID: 19349604 (View on PubMed)

Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003 Jan 24;112(2):257-69. doi: 10.1016/s0092-8674(03)00035-7.

Reference Type BACKGROUND
PMID: 12553913 (View on PubMed)

Buchovecky CM, Turley SD, Brown HM, Kyle SM, McDonald JG, Liu B, Pieper AA, Huang W, Katz DM, Russell DW, Shendure J, Justice MJ. A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome. Nat Genet. 2013 Sep;45(9):1013-20. doi: 10.1038/ng.2714. Epub 2013 Jul 28.

Reference Type BACKGROUND
PMID: 23892605 (View on PubMed)

Bebbington A, Anderson A, Ravine D, Fyfe S, Pineda M, de Klerk N, Ben-Zeev B, Yatawara N, Percy A, Kaufmann WE, Leonard H. Investigating genotype-phenotype relationships in Rett syndrome using an international data set. Neurology. 2008 Mar 11;70(11):868-75. doi: 10.1212/01.wnl.0000304752.50773.ec.

Reference Type BACKGROUND
PMID: 18332345 (View on PubMed)

Ramocki MB, Peters SU, Tavyev YJ, Zhang F, Carvalho CM, Schaaf CP, Richman R, Fang P, Glaze DG, Lupski JR, Zoghbi HY. Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Ann Neurol. 2009 Dec;66(6):771-82. doi: 10.1002/ana.21715.

Reference Type BACKGROUND
PMID: 20035514 (View on PubMed)

Peters SU, Hundley RJ, Wilson AK, Carvalho CM, Lupski JR, Ramocki MB. Brief report: regression timing and associated features in MECP2 duplication syndrome. J Autism Dev Disord. 2013 Oct;43(10):2484-90. doi: 10.1007/s10803-013-1796-9.

Reference Type BACKGROUND
PMID: 23456562 (View on PubMed)

Friez MJ, Jones JR, Clarkson K, Lubs H, Abuelo D, Bier JA, Pai S, Simensen R, Williams C, Giampietro PF, Schwartz CE, Stevenson RE. Recurrent infections, hypotonia, and mental retardation caused by duplication of MECP2 and adjacent region in Xq28. Pediatrics. 2006 Dec;118(6):e1687-95. doi: 10.1542/peds.2006-0395. Epub 2006 Nov 6.

Reference Type BACKGROUND
PMID: 17088400 (View on PubMed)

Van Esch H, Bauters M, Ignatius J, Jansen M, Raynaud M, Hollanders K, Lugtenberg D, Bienvenu T, Jensen LR, Gecz J, Moraine C, Marynen P, Fryns JP, Froyen G. Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am J Hum Genet. 2005 Sep;77(3):442-53. doi: 10.1086/444549. Epub 2005 Jul 29.

Reference Type BACKGROUND
PMID: 16080119 (View on PubMed)

Ramocki MB, Tavyev YJ, Peters SU. The MECP2 duplication syndrome. Am J Med Genet A. 2010 May;152A(5):1079-88. doi: 10.1002/ajmg.a.33184.

Reference Type BACKGROUND
PMID: 20425814 (View on PubMed)

Van Esch H. MECP2 Duplication Syndrome. Mol Syndromol. 2012 Apr;2(3-5):128-136. doi: 10.1159/000329580. Epub 2011 Jul 5.

Reference Type BACKGROUND
PMID: 22679399 (View on PubMed)

Carvalho CM, Ramocki MB, Pehlivan D, Franco LM, Gonzaga-Jauregui C, Fang P, McCall A, Pivnick EK, Hines-Dowell S, Seaver LH, Friehling L, Lee S, Smith R, Del Gaudio D, Withers M, Liu P, Cheung SW, Belmont JW, Zoghbi HY, Hastings PJ, Lupski JR. Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nat Genet. 2011 Oct 2;43(11):1074-81. doi: 10.1038/ng.944.

Reference Type BACKGROUND
PMID: 21964572 (View on PubMed)

Yang T, Ramocki MB, Neul JL, Lu W, Roberts L, Knight J, Ward CS, Zoghbi HY, Kheradmand F, Corry DB. Overexpression of methyl-CpG binding protein 2 impairs T(H)1 responses. Sci Transl Med. 2012 Dec 5;4(163):163ra158. doi: 10.1126/scitranslmed.3004430.

Reference Type BACKGROUND
PMID: 23220634 (View on PubMed)

Na ES, Nelson ED, Adachi M, Autry AE, Mahgoub MA, Kavalali ET, Monteggia LM. A mouse model for MeCP2 duplication syndrome: MeCP2 overexpression impairs learning and memory and synaptic transmission. J Neurosci. 2012 Feb 29;32(9):3109-17. doi: 10.1523/JNEUROSCI.6000-11.2012.

Reference Type BACKGROUND
PMID: 22378884 (View on PubMed)

Na ES, Nelson ED, Kavalali ET, Monteggia LM. The impact of MeCP2 loss- or gain-of-function on synaptic plasticity. Neuropsychopharmacology. 2013 Jan;38(1):212-9. doi: 10.1038/npp.2012.116. Epub 2012 Jul 11.

Reference Type BACKGROUND
PMID: 22781840 (View on PubMed)

Ariani F, Mari F, Pescucci C, Longo I, Bruttini M, Meloni I, Hayek G, Rocchi R, Zappella M, Renieri A. Real-time quantitative PCR as a routine method for screening large rearrangements in Rett syndrome: Report of one case of MECP2 deletion and one case of MECP2 duplication. Hum Mutat. 2004 Aug;24(2):172-7. doi: 10.1002/humu.20065.

Reference Type BACKGROUND
PMID: 15241799 (View on PubMed)

Meins M, Lehmann J, Gerresheim F, Herchenbach J, Hagedorn M, Hameister K, Epplen JT. Submicroscopic duplication in Xq28 causes increased expression of the MECP2 gene in a boy with severe mental retardation and features of Rett syndrome. J Med Genet. 2005 Feb;42(2):e12. doi: 10.1136/jmg.2004.023804. No abstract available.

Reference Type BACKGROUND
PMID: 15689435 (View on PubMed)

Grasshoff U, Bonin M, Goehring I, Ekici A, Dufke A, Cremer K, Wagner N, Rossier E, Jauch A, Walter M, Bauer C, Bauer P, Horber K, Beck-Woedl S, Wieczorek D. De novo MECP2 duplication in two females with random X-inactivation and moderate mental retardation. Eur J Hum Genet. 2011 May;19(5):507-12. doi: 10.1038/ejhg.2010.226. Epub 2011 Feb 16.

Reference Type BACKGROUND
PMID: 21326285 (View on PubMed)

del Gaudio D, Fang P, Scaglia F, Ward PA, Craigen WJ, Glaze DG, Neul JL, Patel A, Lee JA, Irons M, Berry SA, Pursley AA, Grebe TA, Freedenberg D, Martin RA, Hsich GE, Khera JR, Friedman NR, Zoghbi HY, Eng CM, Lupski JR, Beaudet AL, Cheung SW, Roa BB. Increased MECP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males. Genet Med. 2006 Dec;8(12):784-92. doi: 10.1097/01.gim.0000250502.28516.3c.

Reference Type BACKGROUND
PMID: 17172942 (View on PubMed)

Carvalho CM, Zhang F, Liu P, Patel A, Sahoo T, Bacino CA, Shaw C, Peacock S, Pursley A, Tavyev YJ, Ramocki MB, Nawara M, Obersztyn E, Vianna-Morgante AM, Stankiewicz P, Zoghbi HY, Cheung SW, Lupski JR. Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching. Hum Mol Genet. 2009 Jun 15;18(12):2188-203. doi: 10.1093/hmg/ddp151. Epub 2009 Mar 26.

Reference Type BACKGROUND
PMID: 19324899 (View on PubMed)

Reardon W, Donoghue V, Murphy AM, King MD, Mayne PD, Horn N, Birk Moller L. Progressive cerebellar degenerative changes in the severe mental retardation syndrome caused by duplication of MECP2 and adjacent loci on Xq28. Eur J Pediatr. 2010 Aug;169(8):941-9. doi: 10.1007/s00431-010-1144-4. Epub 2010 Feb 23.

Reference Type BACKGROUND
PMID: 20177701 (View on PubMed)

Honda S, Hayashi S, Nakane T, Imoto I, Kurosawa K, Mizuno S, Okamoto N, Kato M, Yoshihashi H, Kubota T, Nakagawa E, Goto Y, Inazawa J. The incidence of hypoplasia of the corpus callosum in patients with dup (X)(q28) involving MECP2 is associated with the location of distal breakpoints. Am J Med Genet A. 2012 Jun;158A(6):1292-303. doi: 10.1002/ajmg.a.35321. Epub 2012 Apr 23.

Reference Type BACKGROUND
PMID: 22528406 (View on PubMed)

Vignoli A, Borgatti R, Peron A, Zucca C, Ballarati L, Bonaglia C, Bellini M, Giordano L, Romaniello R, Bedeschi MF, Epifanio R, Russo S, Caselli R, Giardino D, Darra F, La Briola F, Banderali G, Canevini MP. Electroclinical pattern in MECP2 duplication syndrome: eight new reported cases and review of literature. Epilepsia. 2012 Jul;53(7):1146-55. doi: 10.1111/j.1528-1167.2012.03501.x. Epub 2012 May 11.

Reference Type BACKGROUND
PMID: 22578097 (View on PubMed)

Lupski JR. Genomic disorders ten years on. Genome Med. 2009 Apr 24;1(4):42. doi: 10.1186/gm42.

Reference Type BACKGROUND
PMID: 19439022 (View on PubMed)

Hanashima C, Fernandes M, Hebert JM, Fishell G. The role of Foxg1 and dorsal midline signaling in the generation of Cajal-Retzius subtypes. J Neurosci. 2007 Oct 10;27(41):11103-11. doi: 10.1523/JNEUROSCI.1066-07.2007.

Reference Type BACKGROUND
PMID: 17928452 (View on PubMed)

Brancaccio M, Pivetta C, Granzotto M, Filippis C, Mallamaci A. Emx2 and Foxg1 inhibit gliogenesis and promote neuronogenesis. Stem Cells. 2010 Jul;28(7):1206-18. doi: 10.1002/stem.443.

Reference Type BACKGROUND
PMID: 20506244 (View on PubMed)

Bahi-Buisson N, Villeneuve N, Caietta E, Jacquette A, Maurey H, Matthijs G, Van Esch H, Delahaye A, Moncla A, Milh M, Zufferey F, Diebold B, Bienvenu T. Recurrent mutations in the CDKL5 gene: genotype-phenotype relationships. Am J Med Genet A. 2012 Jul;158A(7):1612-9. doi: 10.1002/ajmg.a.35401. Epub 2012 Jun 7.

Reference Type BACKGROUND
PMID: 22678952 (View on PubMed)

Nemos C, Lambert L, Giuliano F, Doray B, Roubertie A, Goldenberg A, Delobel B, Layet V, N'guyen MA, Saunier A, Verneau F, Jonveaux P, Philippe C. Mutational spectrum of CDKL5 in early-onset encephalopathies: a study of a large collection of French patients and review of the literature. Clin Genet. 2009 Oct;76(4):357-71. doi: 10.1111/j.1399-0004.2009.01194.x.

Reference Type BACKGROUND
PMID: 19793311 (View on PubMed)

Brunetti-Pierri N, Paciorkowski AR, Ciccone R, Della Mina E, Bonaglia MC, Borgatti R, Schaaf CP, Sutton VR, Xia Z, Jelluma N, Ruivenkamp C, Bertrand M, de Ravel TJ, Jayakar P, Belli S, Rocchetti K, Pantaleoni C, D'Arrigo S, Hughes J, Cheung SW, Zuffardi O, Stankiewicz P. Duplications of FOXG1 in 14q12 are associated with developmental epilepsy, mental retardation, and severe speech impairment. Eur J Hum Genet. 2011 Jan;19(1):102-7. doi: 10.1038/ejhg.2010.142. Epub 2010 Aug 25.

Reference Type BACKGROUND
PMID: 20736978 (View on PubMed)

Wang IT, Allen M, Goffin D, Zhu X, Fairless AH, Brodkin ES, Siegel SJ, Marsh ED, Blendy JA, Zhou Z. Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21516-21. doi: 10.1073/pnas.1216988110. Epub 2012 Dec 10.

Reference Type BACKGROUND
PMID: 23236174 (View on PubMed)

Huppke P, Held M, Laccone F, Hanefeld F. The spectrum of phenotypes in females with Rett Syndrome. Brain Dev. 2003 Aug;25(5):346-51. doi: 10.1016/s0387-7604(03)00018-4.

Reference Type BACKGROUND
PMID: 12850514 (View on PubMed)

Rajaei S, Erlandson A, Kyllerman M, Albage M, Lundstrom I, Karrstedt EL, Hagberg B. Early infantile onset ''congenital'' Rett syndrome variants: Swedish experience through four decades and mutation analysis. J Child Neurol. 2011 Jan;26(1):65-71. doi: 10.1177/0883073810374125.

Reference Type BACKGROUND
PMID: 21212452 (View on PubMed)

Nectoux J, Fichou Y, Cagnard N, Bahi-Buisson N, Nusbaum P, Letourneur F, Chelly J, Bienvenu T. Cell cloning-based transcriptome analysis in cyclin-dependent kinase-like 5 mutation patients with severe epileptic encephalopathy. J Mol Med (Berl). 2011 Feb;89(2):193-202. doi: 10.1007/s00109-010-0699-x. Epub 2010 Nov 24.

Reference Type BACKGROUND
PMID: 21107515 (View on PubMed)

Ricciardi S, Kilstrup-Nielsen C, Bienvenu T, Jacquette A, Landsberger N, Broccoli V. CDKL5 influences RNA splicing activity by its association to the nuclear speckle molecular machinery. Hum Mol Genet. 2009 Dec 1;18(23):4590-602. doi: 10.1093/hmg/ddp426. Epub 2009 Sep 9.

Reference Type BACKGROUND
PMID: 19740913 (View on PubMed)

Weaving LS, Christodoulou J, Williamson SL, Friend KL, McKenzie OL, Archer H, Evans J, Clarke A, Pelka GJ, Tam PP, Watson C, Lahooti H, Ellaway CJ, Bennetts B, Leonard H, Gecz J. Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am J Hum Genet. 2004 Dec;75(6):1079-93. doi: 10.1086/426462. Epub 2004 Oct 18.

Reference Type BACKGROUND
PMID: 15492925 (View on PubMed)

Bahi-Buisson N, Kaminska A, Boddaert N, Rio M, Afenjar A, Gerard M, Giuliano F, Motte J, Heron D, Morel MA, Plouin P, Richelme C, des Portes V, Dulac O, Philippe C, Chiron C, Nabbout R, Bienvenu T. The three stages of epilepsy in patients with CDKL5 mutations. Epilepsia. 2008 Jun;49(6):1027-37. doi: 10.1111/j.1528-1167.2007.01520.x. Epub 2008 Feb 7.

Reference Type BACKGROUND
PMID: 18266744 (View on PubMed)

Bahi-Buisson N, Nectoux J, Rosas-Vargas H, Milh M, Boddaert N, Girard B, Cances C, Ville D, Afenjar A, Rio M, Heron D, N'guyen Morel MA, Arzimanoglou A, Philippe C, Jonveaux P, Chelly J, Bienvenu T. Key clinical features to identify girls with CDKL5 mutations. Brain. 2008 Oct;131(Pt 10):2647-61. doi: 10.1093/brain/awn197. Epub 2008 Sep 12.

Reference Type BACKGROUND
PMID: 18790821 (View on PubMed)

Fehr S, Wilson M, Downs J, Williams S, Murgia A, Sartori S, Vecchi M, Ho G, Polli R, Psoni S, Bao X, de Klerk N, Leonard H, Christodoulou J. The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur J Hum Genet. 2013 Mar;21(3):266-73. doi: 10.1038/ejhg.2012.156. Epub 2012 Aug 8.

Reference Type BACKGROUND
PMID: 22872100 (View on PubMed)

Melani F, Mei D, Pisano T, Savasta S, Franzoni E, Ferrari AR, Marini C, Guerrini R. CDKL5 gene-related epileptic encephalopathy: electroclinical findings in the first year of life. Dev Med Child Neurol. 2011 Apr;53(4):354-60. doi: 10.1111/j.1469-8749.2010.03889.x. Epub 2011 Feb 11.

Reference Type BACKGROUND
PMID: 21309761 (View on PubMed)

Elia M, Falco M, Ferri R, Spalletta A, Bottitta M, Calabrese G, Carotenuto M, Musumeci SA, Lo Giudice M, Fichera M. CDKL5 mutations in boys with severe encephalopathy and early-onset intractable epilepsy. Neurology. 2008 Sep 23;71(13):997-9. doi: 10.1212/01.wnl.0000326592.37105.88.

Reference Type BACKGROUND
PMID: 18809835 (View on PubMed)

Related Links

Access external resources that provide additional context or updates about the study.

http://www.rettsyndrome.org/

International Rett Syndrome Foundation website

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

U54HD061222

Identifier Type: NIH

Identifier Source: secondary_id

View Link

RDCRN # 5213

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Reverse Phenotyping Core
NCT03632239 ENROLLING_BY_INVITATION
Finding Genes for Rare Diseases
NCT02724995 WITHDRAWN