Compensatory Reserve Index as a Hemodynamic Status Evaluation Tool in Patients
NCT ID: NCT02701725
Last Updated: 2016-03-09
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
600 participants
OBSERVATIONAL
2016-03-31
2016-09-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The indices measured in the study will not be a consideration when handling patients. The medical team will not be exposed to metrics measured.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Comparison of Compensatory Reserve Index to Intravascular Volume Change and Stroke Volume
NCT01935427
Comparison of Compensatory Reserve Index to Changes in Stroke Volume and Intravascular Volume
NCT02980471
Comparison of Physiological Variables During Blood Donation
NCT02029807
Evaluation of Capillary Refill Index
NCT04144166
The Use of Tissue Oxygen Monitoring in Critically Injured Patients
NCT00328341
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
These data are then integrated in an attempt to form an accurate patient status and to determine the urgency of treatment and evacuation to the next echelon of care when necessary. When caring for multiple casualties, this process takes on an even greater importance because the care of one patient can delay the care of others.
Triage and monitoring of patients consists of several vital sign measurements including blood pressure, oxygen saturation, and heart rate. These measurements show varying correlation with patient survival, Injury Severity Score, and the need for life-saving intervention. The most significant disadvantage of their use as part of patient triage is that they are all retrospective by nature, and a change in these indices occur only after substantial hemodynamic compromise and failure of compensatory mechanisms when life-saving interventions might be too late.
Because of the limitations inherent to these vital signs, several calculated indices have been suggested in an attempt to integrate a few vital signs into more sensitive metrics for prediction of patient outcomes. The most frequently described metric is shock index (SI), which is calculated as the ratio between heart rate and systolic blood pressure (normal values, 0.5 Y 0.7), and has demonstrated superiority over other indices. Heart rate variability has also been frequently suggested as a calculated vital sign, but its clinical utility in the acute blood loss setting has proven to be limited as a result of its high interpatient and intrapatient variability.
The Compensatory Reserve Index (CRI) represents a new paradigm for measuring the physiological reserve of integrated cardiopulmonary mechanisms (e.g., tachycardia, vasoconstriction, breathing) that compensate for reduced central blood volume. Advanced sensor technologies such as photoplethysmography enable noninvasive recordings of analog arterial waveforms. Using a model that induces stepwise reduction of central blood volume (lower body negative pressure \[LBNP\]) in volunteering young healthy human test subjects, through application of negative pressure to the lower body, feature-extraction and machine-learning techniques were used to reveal subtle changes in waveform features that are associated with a declining volume. This approach enables simultaneous abstraction and normalization of various characteristics of the arterial waveform. As such, the CRI aims to reflect the capacity of all factors contributing to physiological compensatory mechanisms, including compensatory reflexes, various muscle contractions, and respirations, among others. Compensatory Reserve Index values range from 0 (complete decompensation) to 1 (full compensatory reserve available). The device itself is compact, light, and can be placed on the patient's finger, and the test can be performed within 30 s, making the measurement of CRI theoretically feasible in almost any setting. The approach was designed to prospectively identify ongoing loss of central blood volume and thus estimate the point at which individuals will experience hemodynamic decompensation (onset of shock) well in advance compared with changes in standard or "legacy" vital signs.
The CRI has been shown to correlate with central blood volume changes in human subjects in laboratory conditions however, few published data regarding its use in other experimental models or its ability to detect actual blood loss exist. The current investigation represents the first effort to apply a small pulse oximeter unit to test the CRI on human subjects admitted to hospital.
The purpose of the study is to test the hypothesis that a novel noninvasive CRI monitoring algorithm would demonstrate greater sensitivity and specificity compared with standard vital signs for identifying patients with blood loss, SIRS, sepsis thus enabling appropriate measures to be taken.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_CONTROL
PROSPECTIVE
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
CRI status
Measurement of CRI
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* All patients receiving blood products of any type
* All patients with SIRS or Sepsis
* All patients who are anticipated to suffer for sepsis
Exclusion Criteria
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Meir Medical Center
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
References
Explore related publications, articles, or registry entries linked to this study.
King DR, Ogilvie MP, Pereira BM, Chang Y, Manning RJ, Conner JA, Schulman CI, McKenney MG, Proctor KG. Heart rate variability as a triage tool in patients with trauma during prehospital helicopter transport. J Trauma. 2009 Sep;67(3):436-40. doi: 10.1097/TA.0b013e3181ad67de.
Convertino VA, Ryan KL, Rickards CA, Salinas J, McManus JG, Cooke WH, Holcomb JB. Physiological and medical monitoring for en route care of combat casualties. J Trauma. 2008 Apr;64(4 Suppl):S342-53. doi: 10.1097/TA.0b013e31816c82f4.
Soller BR, Zou F, Ryan KL, Rickards CA, Ward K, Convertino VA. Lightweight noninvasive trauma monitor for early indication of central hypovolemia and tissue acidosis: a review. J Trauma Acute Care Surg. 2012 Aug;73(2 Suppl 1):S106-11. doi: 10.1097/TA.0b013e318260a928.
Bruijns SR, Guly HR, Bouamra O, Lecky F, Lee WA. The value of traditional vital signs, shock index, and age-based markers in predicting trauma mortality. J Trauma Acute Care Surg. 2013 Jun;74(6):1432-7. doi: 10.1097/TA.0b013e31829246c7.
Moulton SL, Mulligan J, Grudic GZ, Convertino VA. Running on empty? The compensatory reserve index. J Trauma Acute Care Surg. 2013 Dec;75(6):1053-9. doi: 10.1097/TA.0b013e3182aa811a.
Birkhahn RH, Gaeta TJ, Terry D, Bove JJ, Tloczkowski J. Shock index in diagnosing early acute hypovolemia. Am J Emerg Med. 2005 May;23(3):323-6. doi: 10.1016/j.ajem.2005.02.029.
Rixen D, Siegel JH, Friedman HP. "Sepsis/SIRS," physiologic classification, severity stratification, relation to cytokine elaboration and outcome prediction in posttrauma critical illness. J Trauma. 1996 Oct;41(4):581-98. doi: 10.1097/00005373-199610000-00001.
Convertino VA, Howard JT, Hinojosa-Laborde C, Cardin S, Batchelder P, Mulligan J, Grudic GZ, Moulton SL, MacLeod DB. Individual-Specific, Beat-to-beat Trending of Significant Human Blood Loss: The Compensatory Reserve. Shock. 2015 Aug;44 Suppl 1:27-32. doi: 10.1097/SHK.0000000000000323.
Nadler R, Convertino VA, Gendler S, Lending G, Lipsky AM, Cardin S, Lowenthal A, Glassberg E. The value of noninvasive measurement of the compensatory reserve index in monitoring and triage of patients experiencing minimal blood loss. Shock. 2014 Aug;42(2):93-8. doi: 10.1097/SHK.0000000000000178.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
0260-15-MMC
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.