Novel Mechanisms and Approaches to Treat Neonatal Sepsis

NCT ID: NCT02554630

Last Updated: 2023-02-10

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

142 participants

Study Classification

OBSERVATIONAL

Study Start Date

2016-02-29

Study Completion Date

2022-10-21

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Mortality related to neonatal sepsis exceeds 1 million deaths worldwide; the highest risk of mortality is in preterm neonates, especially low birth weight (LBW), and very low birth weight (VLBW) neonates. The estimated cost of caring for these patients is approximately $700 million in the US alone.

In an effort to help mature the neonatal immune system, several adjuvant therapies have been studied; however, none have been implemented in clinical practice. One of the most frequently considered targets for adjuvant therapy is toll-like receptors (TLRs). TLRs detect conserved molecular products of microorganisms (lipopolysaccharide (LPS), and initiate immunity and inflammation. Early adjuvant administration in VLBW infants may be a viable approach to reducing the incidence of early and late sepsis.

This research study will characterize immune genomic expression and functional capacity at the time of birth in both term and preterm neonates and determine what effects, if any, that adjuvants have on this function. Additionally, this study will seek to determine if immune function correlates with certain microbiota.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Blood samples will be collected from three populations: preterm infants, term infants and healthy adult controls. In addition, a collection of meconium (\<1mL) from the diaper of these term and preterm neonates;

1. Term neonates (gestational age 37-42 weeks) between birth and 72 hours of life who have blood collected for the following clinical indications:

a. Blood will be collected at 0-72 hours of life from neonates that are undergoing state metabolic screens or for clinical evaluation jaundice. The sample will be obtained during the standard of care state metabolic screen or for clinical evaluation of jaundice. The neonate will only have an extra drop of blood placed (500-700 micro-liters) in a tube during the heel sticks. Neonates will only have 1 sample drawn throughout the duration of the study.
2. Preterm neonates (gestational age 24-37 weeks) consisting of two populations between birth and 72 hours of life who have blood collected for the following clinical indications:

1. Blood will be collected at 0-72 hours of life from neonates that are otherwise healthy and do not require additional laboratory testing who are undergoing state metabolic screens or for evaluation of jaundice. The neonate will only have an extra drop of blood placed (500-700 microliters) in a tube during the heel stick. Neonates will only have 1 sample drawn throughout the duration of the study.
2. A second group of premature neonates will have blood drawn for complications related to prematurity (sepsis work-up). The neonate will only have an extra drop of blood placed (500-700 micro-liters) in a tube during one of these clinical blood draws.
3. Healthy adult controls will have (4milleters) blood collected by way of vein puncture.

For all infants, term and preterm, the following data will be collected at the time of blood collection: gender, gestational age, weight, mechanism of birth (vaginal vs cesarean section), evidence of infectious complication (chorioamnionitis, prolonged rupture of membranes, maternal group B strep colonization, hypoglycemia), use of perinatal antibiotics or steroids, laboratory values available in the electronic medial record (CBC, CMP, Lactic acid, CRP) and Apgar scores will be collected from each patient. Additionally the clinical outcomes of these patients, term and preterm,will be collected until time of discharge but not to exceed 90 days.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Complication of Prematurity Immunologic Deficiency Syndromes

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

CASE_CONTROL

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Preterm Neonate

Neonates of gestational age 24-37 weeks. Blood collection will be performed at the time of a clinically required heelstick or blood draw. Microfluidic techniques, utilizing whole blood, will be employed to characterize the baseline genomic profile and functional capacity of immune cells. Adjuvant drugs will be employed ex-vivo to determine if adjuvant therapies change genomic expression and bolster immune function. Meconium will be collected for microbiome analysis. Clinical outcomes will be recorded from the electronic medical record.

Adjuvant

Intervention Type OTHER

Blood will be incubated, ex-vivo, with one of the adjuvant therapies or no adjuvant and then, using microfluidic techniques the immune genomic profile and the functional capacity of immune cells will be assessed.

Blood Collection

Intervention Type OTHER

Blood collection will be performed on all groups.

Term Neonates

Neonates of gestational age 37-42 weeks. Blood collection will be performed at the time of a clinically required heelstick or blood draw. Microfluidic techniques, utilizing whole blood, will be employed to characterize the baseline genomic profile and functional capacity of immune cells. Adjuvant drugs will be employed ex-vivo to determine if adjuvant therapies change genomic expression and bolster immune function. Meconium will be collected for microbiome analysis. Clinical outcomes will be recorded from the electronic medical record.

Adjuvant

Intervention Type OTHER

Blood will be incubated, ex-vivo, with one of the adjuvant therapies or no adjuvant and then, using microfluidic techniques the immune genomic profile and the functional capacity of immune cells will be assessed.

Blood Collection

Intervention Type OTHER

Blood collection will be performed on all groups.

Healthy Adult Control

Healthy Adult aged 18-55 years will undergo a single blood collection by the way of vein puncture. Microfluidic techniques, utilizing whole blood, will be employed to evaluate the genomic profile and functional capacity of immune cells. Adjuvant drugs will be employed ex-vivo to determine if adjuvant therapies change genomic expression and bolster immune function.

Adjuvant

Intervention Type OTHER

Blood will be incubated, ex-vivo, with one of the adjuvant therapies or no adjuvant and then, using microfluidic techniques the immune genomic profile and the functional capacity of immune cells will be assessed.

Blood Collection

Intervention Type OTHER

Blood collection will be performed on all groups.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Adjuvant

Blood will be incubated, ex-vivo, with one of the adjuvant therapies or no adjuvant and then, using microfluidic techniques the immune genomic profile and the functional capacity of immune cells will be assessed.

Intervention Type OTHER

Blood Collection

Blood collection will be performed on all groups.

Intervention Type OTHER

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Lippopolysaccaride Specific toll-like receptor 4 agonist Non-specific toll-like receptor 4 agonist

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Consent to participate in the study


* Consent to participate in the study
* Age \>18 years old, \<55 years old

Exclusion Criteria

* non- survivable condition

Healthy Adult Controls


* Age \<18 years old, \>55 years old
* Severe pre-existing organ dysfunction
* Oncolytic therapy within 14 days
* HIV positive status
* Current use of chronic steroids
Maximum Eligible Age

55 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Institute of General Medical Sciences (NIGMS)

NIH

Sponsor Role collaborator

Surgical Infection Society

UNKNOWN

Sponsor Role collaborator

University of Florida

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Shawn Larson, MD

Role: PRINCIPAL_INVESTIGATOR

University of Florida

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

UF Health

Gainesville, Florida, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Watson RS, Carcillo JA, Linde-Zwirble WT, Clermont G, Lidicker J, Angus DC. The epidemiology of severe sepsis in children in the United States. Am J Respir Crit Care Med. 2003 Mar 1;167(5):695-701. doi: 10.1164/rccm.200207-682OC. Epub 2002 Nov 14.

Reference Type BACKGROUND
PMID: 12433670 (View on PubMed)

Lawn JE, Kerber K, Enweronu-Laryea C, Cousens S. 3.6 million neonatal deaths--what is progressing and what is not? Semin Perinatol. 2010 Dec;34(6):371-86. doi: 10.1053/j.semperi.2010.09.011.

Reference Type BACKGROUND
PMID: 21094412 (View on PubMed)

Cuenca AG, Wynn JL, Moldawer LL, Levy O. Role of innate immunity in neonatal infection. Am J Perinatol. 2013 Feb;30(2):105-12. doi: 10.1055/s-0032-1333412. Epub 2013 Jan 7.

Reference Type BACKGROUND
PMID: 23297181 (View on PubMed)

PrabhuDas M, Adkins B, Gans H, King C, Levy O, Ramilo O, Siegrist CA. Challenges in infant immunity: implications for responses to infection and vaccines. Nat Immunol. 2011 Mar;12(3):189-94. doi: 10.1038/ni0311-189. No abstract available.

Reference Type BACKGROUND
PMID: 21321588 (View on PubMed)

Wynn JL, Scumpia PO, Winfield RD, Delano MJ, Kelly-Scumpia K, Barker T, Ungaro R, Levy O, Moldawer LL. Defective innate immunity predisposes murine neonates to poor sepsis outcome but is reversed by TLR agonists. Blood. 2008 Sep 1;112(5):1750-8. doi: 10.1182/blood-2008-01-130500. Epub 2008 Jun 30.

Reference Type BACKGROUND
PMID: 18591384 (View on PubMed)

Wynn JL, Levy O. Role of innate host defenses in susceptibility to early-onset neonatal sepsis. Clin Perinatol. 2010 Jun;37(2):307-37. doi: 10.1016/j.clp.2010.04.001.

Reference Type BACKGROUND
PMID: 20569810 (View on PubMed)

Yost CC, Cody MJ, Harris ES, Thornton NL, McInturff AM, Martinez ML, Chandler NB, Rodesch CK, Albertine KH, Petti CA, Weyrich AS, Zimmerman GA. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood. 2009 Jun 18;113(25):6419-27. doi: 10.1182/blood-2008-07-171629. Epub 2009 Feb 12.

Reference Type BACKGROUND
PMID: 19221037 (View on PubMed)

Gessler P, Nebe T, Birle A, Haas N, Kachel W. Neutrophil respiratory burst in term and preterm neonates without signs of infection and in those with increased levels of C-reactive protein. Pediatr Res. 1996 May;39(5):843-8. doi: 10.1203/00006450-199605000-00017.

Reference Type BACKGROUND
PMID: 8726239 (View on PubMed)

Gentile LF, Nacionales DC, Lopez MC, Vanzant E, Cuenca A, Cuenca AG, Ungaro R, Szpila BE, Larson S, Joseph A, Moore FA, Leeuwenburgh C, Baker HV, Moldawer LL, Efron PA. Protective immunity and defects in the neonatal and elderly immune response to sepsis. J Immunol. 2014 Apr 1;192(7):3156-65. doi: 10.4049/jimmunol.1301726. Epub 2014 Mar 3.

Reference Type BACKGROUND
PMID: 24591376 (View on PubMed)

Cuenca AG, Cuenca AL, Gentile LF, Efron PA, Islam S, Moldawer LL, Kays DW, Larson SD. Delayed emergency myelopoiesis following polymicrobial sepsis in neonates. Innate Immun. 2015 May;21(4):386-91. doi: 10.1177/1753425914542445. Epub 2014 Aug 7.

Reference Type BACKGROUND
PMID: 25106654 (View on PubMed)

Sweeney SE, Firestein GS. Primer: signal transduction in rheumatic disease--a clinician's guide. Nat Clin Pract Rheumatol. 2007 Nov;3(11):651-60. doi: 10.1038/ncprheum0631.

Reference Type BACKGROUND
PMID: 17968336 (View on PubMed)

Kollmann TR, Crabtree J, Rein-Weston A, Blimkie D, Thommai F, Wang XY, Lavoie PM, Furlong J, Fortuno ES 3rd, Hajjar AM, Hawkins NR, Self SG, Wilson CB. Neonatal innate TLR-mediated responses are distinct from those of adults. J Immunol. 2009 Dec 1;183(11):7150-60. doi: 10.4049/jimmunol.0901481. Epub 2009 Nov 16.

Reference Type BACKGROUND
PMID: 19917677 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

R01GM097531

Identifier Type: NIH

Identifier Source: secondary_id

View Link

IRB201500447 -N

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Antibiotic "Dysbiosis" in Preterm Infants
NCT02784821 COMPLETED PHASE2