Effect Of Mesenchymal Stem Cells Transfusion on the Diabetic Peripheral Neuropathy Patients .

NCT ID: NCT02387749

Last Updated: 2018-07-03

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

10 participants

Study Classification

INTERVENTIONAL

Study Start Date

2014-05-31

Study Completion Date

2016-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

A debilitating consequence of diabetes mellitus (DM) is neuropathy which globally affects between 20 -30% of diabetic patients and up to 50% in other studies. The incidence of diabetic neuropathy (DN) is estimated to be up to 45% for type 2 diabetic patients and 59% for type 1diabetic patients in USA.(DN) is the most common complication of DM.The pathophysiology of DN is promoted by several risk factors: micro vascular disease, neural hypoxia, and hyperglycemia-induced effects.At the molecular level, the primary cause of diabetic complications is known to be hyperglycemia, which disrupts cellular metabolism by the formation of reactive oxygen species (ROS).In the aspect of nerve functions, ROS formation increases neuron's susceptibility to damage. In addition, hyperglycemia impedes production of angiogenic and neurotrophic growth factors, which are necessary for normal function of neurons and glial cells and maintenance of vascular structure.No definitive disease-modifying treatments have been to reverse DN. The current treatment focuses on tight glycemic control which can reduce potential risk factors for further nerve damage and DN-associated pain management.In many studies, deficiency of neurotrophic factors and lack of vascular support have been regarded as key factors in the development DN.Mesenchymal stem cells (MSCs) are particularly attractive therapeutic agents because of their ability to self-renew, differentiate into multi lineage cell types, and locally secrete angiogenic cytokines, including basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) .These factors were reported to prompt neovascularization and have support for neural regeneration.It was plausible that MSCs may also be an effective therapeutic agent for the DN treatment through the paracrine effects of bFGF (Shibata et al., 2008) and VEGF and their potential to differentiate into neural cells such as astrocytes, oligodendrocytes , and Schwann cells.The adherent nature of MSCs makes them easy to expand in culture and an attractive candidate to use in cell therapy.Therefore, cell therapy has recently emerged as an attractive therapeutic strategy to meet the needs of both neurotrophic and vascular deficiencies of DN.Proper diagnosis of DN depends on the pattern of sensory loss, reflex test, electrodiagnostic studies, and imaging

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Objectives This study will be conducted to investigate the effects of Mesenchymal stem cells (MSC) transfusion on diabetic peripheral neuropathy in diabetic patient. (MSCs) have been reported to secrete various cytokines that exhibit angiogenic and neuro supportive effects.

Study Design Experimental interventional study. phase II clinical trial

Ethical committee approval (was it ethically approved by the department) Internal medicine department Yes

Study Methods

Population of study \& disease condition (e.g women with hepatitis, ………) Diabetic patients(type I, type II) with documented peripheral neuropathy as determined by impaired nerve conduction

Inclusion criteria:

(Type I, type II) diabetic patients age range (18-45) years, with diabetic peripheral neuropathy proved by clinical assessment and nerve conduction who did not receive treatment for diabetic peripheral neuropathy.

Exclusion criteria:

Decompensated cardiac, renal or liver disease. Associated autoimmune diseases Associated endocrinal diseases Pregnancy, usage of contraceptive pills or steroids.

Methodology in details The study will be conducted on patients with diabetic peripheral neuropathy collected from internal medicine department(inpatient and out patients, males and females)

All subjects of this study will be submitted to the following :( preparatory visit before (MSCs) transfusion visit.)

* Thorough clinical assessment as a general assessment of the patient, also assessment of diabetes complications especially diabetic neuropathy. This is including full history and examinations (e.g., pain, sensory loss, ulcers, sensory level, etc….) this preparatory assessment will be done at internal medicine department.
* Venous blood will be drawn in the morning after an overnight fast in the pre (MSCs) transfusion visit.

Plasma biochemical blood measurements will be determined by standard laboratory procedures in the central lab at clinical pathology department, Kasr Alaini hospital)

* Fasting blood glucose level, 2 hours postprandial.
* C-peptide.
* Hb A1C.
* Basic Fibroblast Growth Factor (bFGF), vascular endothelial growth factor (VEGF) by ELISA.
* Complete blood picture.
* Liver functions in the form of ALT, AST
* Kidney functions in the form of serum creatinine.

* fundus examination
* Nerve conduction study at neurophysiology unit.
* Bone marrow aspiration of about 90 ml under local anesthesia once at the first visit after preparatory visit mentioned before, the patient will be admitted for 12 hours and will be monitored closely to avoid anaphylaxis (by steroids, anti-allergic treatment), if no complication, will be discharged.

To avoid infection: During bone marrow aspiration, procedure will be done under complete aseptic precautions, placed in sterile tubes containing pre-servative-free heparin (Sigma-Aldrich, St. Louis, USA) Separation and processing of the sample will be done under good manufacture procedure (GMP): Bone Marrow Aspirate (BMA) will be withdrawn under good sterilization of the skin in an isolated area. Processing of the sample will be done in the laminar air flow; all supplies are disposable and sterile.

Technique:

Separation of mononuclear cells:

The bone marrow aspirate will be diluted at a ratio of 6:1 with phosphate buffer saline (PBS) with 2 mM EDTA (30 ml BM aspirate+ 5 ml PBS/EDTA buffer). The MNCs will be separated under aseptic conditions using a Ficoll. Hypaque desity gradient (density 1.077, GibcoBRL, Grand Islan, NY, USA) by centrifugation at 1800 rpm for 20 min then the MNCs will be plated in 40 ml alpha-modi-field Eagle's medium (αMEM), serum free media; mesencult(Mesenchymal stem cell culture),penicillin (100 U/ml),streptomycin(10 mg/ml),0.5 ml amphotericin B(all from Gibco BRL) and 10 ng/ml basic fibroblast growth factor (b-FGF) (R\&D system, Minneapolis, MN) and will be incubated at 370 c in a humidified atmosphere containing 5% CO2 (Digirolamo et al.1999).after one day ,non adherent cells will be cultured in the presence of Mesenchymal media for 3 weeks changed every 1 week (cambrex Bioscience ,Nottingham, uk). After reaching 80% confluence the MSCs will be placed in 10 ml saline and will be infused intravenously

Flow cytometry Surface expression of MSCs using anti- (CD271, CD34, CD73, CD90, CD105, CD29) monoclonal antibodies (mAbs) will be analyzed using flow cytometry. MSCs (2X105 cells) will be suspended in PBS containing 1% BSA and will be stained with flurochrome -conjugated mAbs for 20 minutes on ice (anti-mouse mAanti-CD 271, CD34 CD73, CD90, CD105,CD29; BD Bioscience, MN, USA).flow cytometric analysis will be performed using a FACSCaliber (BD bioscience)equipped with cell Quest software.10000 cells will be passed in front of the laser for each sample. Each sample will be analyzed in duplicate. A cut off value at 20% will be set to categorize samples as positive.

Mesenchymal stem cells will be identified by morphology and immunophenotyping in the central lab at clinical pathology department, Kasr Alaini hospital( stem cell lab).

Mesenchymal stem cells transfusion slowly intravenous will be applied after these procedures for the patients after taking their approval and informed consent.

Follow up 3 months after Mesenchymal stem cells transfusion by fasting blood glucose level, 2 hours postprandial, C-peptide, Hb A1C, (bFGF), (VEGF) and nerve conduction at kasr Alaini hospital departments as mentioned before.

Possible Risk (mention if there is any risk or not) Anaphylaxis Infection

Primary outcomes (Most important outcomes to be assessed)

1- Effect of mesenchymal stem cells transfusion on diabetic peripheral neuropathy regarding improvement of clinical symptoms like pain, sensory loss and improvement of nerve conduction.

Secondary outcome parameters (other outcomes to be assessed)

1. Mesenchymal stem cells being a treatment modality in diabetes complications like peripheral neuropathy, to avoid hazards on patients secondary to diabetic peripheral neuropathy.
2. Improving of diabetic condition like lowering of blood glucose level, decrease in insulin requirements and improvement of general condition.

Sample size (number of participants included) 10 diabetic patients with diabetic peripheral neuropathy .

Source of funding (is there any source of funds or not) Faculty Of Medicine, Cairo University.

Time plan (when to start/ when expected to finish/ when to publish) At least 20 months

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Diabetic Peripheral Neuropathy

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

mesenchymal stem cells

The BM aspirate will be diluted at 6:1 ratio with phosphate buffer saline with 2 ml EDTA (30 ml BM aspirate+ 5 ml PBS/EDTA buffer).MNCs will be separated under aseptic conditions using a Ficoll. Hypaque desity gradient by centrifugation at 1800 rpm for 20 min then the MNCs will be plated in 40 ml(αMEM), serum free media; mesencult(MSCs culture),penicillin (100 U/ml),streptomycin(10 mg/ml),0.5 ml amphotericin B(all from Gibco BRL) and 10 ng/ml basic fibroblast growth factor (b-FGF)(R\&D system, Minneapolis, MN) and will be incubated at 370 c in a humidified atmosphere containing 5% CO2 .after one day ,nonadherent cells will be cultured in the presence of Mesenchymal media for 3 weeks changed every week. After reaching 80% confluence the MSCs will be placed in 10 ml saline and infused IV.

Group Type EXPERIMENTAL

mesenchymal stem cells

Intervention Type GENETIC

collection of stem cells by bone marrow biopsy from iliac crest, then culture for 1 month , then IV transfusion on 2 sessions to the same patient

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

mesenchymal stem cells

collection of stem cells by bone marrow biopsy from iliac crest, then culture for 1 month , then IV transfusion on 2 sessions to the same patient

Intervention Type GENETIC

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* (Type I, type II) diabetic patients age range (18-45) years, with diabetic peripheral neuropathy proved by clinical assessment and nerve conduction who did not receive treatment for diabetic peripheral neuropathy.

Exclusion Criteria

* Decompensated cardiac, renal or liver disease. Associated autoimmune diseases Associated endocrinal diseases Pregnancy, usage of contraceptive pills or steroids.
Minimum Eligible Age

18 Years

Maximum Eligible Age

45 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Cairo University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

dina mohammed riad

Assistant Lecturer of Internal Medicine,faculty of medicine,Kasr Al Ainy hospital

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Mohamed Gamal ElDin Saadi, phd

Role: STUDY_CHAIR

Cairo University

Dina Abdelmagid, MD, MRCP UK

Role: PRINCIPAL_INVESTIGATOR

Cairo University

References

Explore related publications, articles, or registry entries linked to this study.

Jackson L, Jones DR, Scotting P, Sottile V. Adult mesenchymal stem cells: differentiation potential and therapeutic applications. J Postgrad Med. 2007 Apr-Jun;53(2):121-7. doi: 10.4103/0022-3859.32215.

Reference Type BACKGROUND
PMID: 17495381 (View on PubMed)

Keilhoff G, Stang F, Goihl A, Wolf G, Fansa H. Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol. 2006 Oct-Nov;26(7-8):1235-52. doi: 10.1007/s10571-006-9029-9. Epub 2006 Jun 16.

Reference Type BACKGROUND
PMID: 16779672 (View on PubMed)

Kinnaird T, Stabile E, Burnett MS, Epstein SE. Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res. 2004 Aug 20;95(4):354-63. doi: 10.1161/01.RES.0000137878.26174.66.

Reference Type BACKGROUND
PMID: 15321945 (View on PubMed)

Morbach S, Lutale JK, Viswanathan V, Mollenberg J, Ochs HR, Rajashekar S, Ramachandran A, Abbas ZG. Regional differences in risk factors and clinical presentation of diabetic foot lesions. Diabet Med. 2004 Jan;21(1):91-5. doi: 10.1046/j.1464-5491.2003.01069.x.

Reference Type BACKGROUND
PMID: 14706061 (View on PubMed)

Nakae M, Kamiya H, Naruse K, Horio N, Ito Y, Mizubayashi R, Hamada Y, Nakashima E, Akiyama N, Kobayashi Y, Watarai A, Kimura N, Horiguchi M, Tabata Y, Oiso Y, Nakamura J. Effects of basic fibroblast growth factor on experimental diabetic neuropathy in rats. Diabetes. 2006 May;55(5):1470-7. doi: 10.2337/db05-1160.

Reference Type BACKGROUND
PMID: 16644707 (View on PubMed)

Rathur HM, Boulton AJ. Recent advances in the diagnosis and management of diabetic neuropathy. J Bone Joint Surg Br. 2005 Dec;87(12):1605-10. doi: 10.1302/0301-620X.87B12.16710. No abstract available.

Reference Type BACKGROUND
PMID: 16326870 (View on PubMed)

Shibata T, Naruse K, Kamiya H, Kozakae M, Kondo M, Yasuda Y, Nakamura N, Ota K, Tosaki T, Matsuki T, Nakashima E, Hamada Y, Oiso Y, Nakamura J. Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes. 2008 Nov;57(11):3099-107. doi: 10.2337/db08-0031. Epub 2008 Aug 26.

Reference Type BACKGROUND
PMID: 18728233 (View on PubMed)

Adler AI, Stratton IM, Neil HA, Yudkin JS, Matthews DR, Cull CA, Wright AD, Turner RC, Holman RR. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ. 2000 Aug 12;321(7258):412-9. doi: 10.1136/bmj.321.7258.412.

Reference Type BACKGROUND
PMID: 10938049 (View on PubMed)

Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol. 1999 Nov;107(2):275-81. doi: 10.1046/j.1365-2141.1999.01715.x.

Reference Type BACKGROUND
PMID: 10583212 (View on PubMed)

Dalla Paola L, Faglia E. Treatment of diabetic foot ulcer: an overview strategies for clinical approach. Curr Diabetes Rev. 2006 Nov;2(4):431-47. doi: 10.2174/1573399810602040431.

Reference Type BACKGROUND
PMID: 18220646 (View on PubMed)

Aldali F, Deng C, Nie M, Chen H. Advances in therapies using mesenchymal stem cells and their exosomes for treatment of peripheral nerve injury: state of the art and future perspectives. Neural Regen Res. 2025 Nov 1;20(11):3151-3171. doi: 10.4103/NRR.NRR-D-24-00235. Epub 2024 Oct 22.

Reference Type DERIVED
PMID: 39435603 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

FACULTY OF MEDICINE,CAIRO U

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.