Ranolazine Mediated PVC Reduction in Ischemic Heart Disease
NCT ID: NCT02360397
Last Updated: 2020-01-29
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE2
6 participants
INTERVENTIONAL
2014-12-31
2018-02-23
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Study to Reduce Symptoms of Premature Beats With Ranolazine
NCT01996618
Effect of Ranolazine on Valvular Disease in Patients With Pacemakers
NCT01979965
Ranolazine in Ischemic Cardiomyopathy
NCT01345188
The Effects of Ranolazine on CPET Parameters in Ischemic Cardiomyopathy Patients (ERIC)
NCT01705509
Ranolazine Implantable Cardioverter-Defibrillator Trial
NCT01215253
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Ranolazine is a piperazine derivative that exerts anti-ischemic actions without a clinically significant effect on heart rate or blood pressure. At clinically relevant concentrations, ranolazine is an inhibitor of the slowly inactivating component of the cardiac sodium current (late INa), which may reduce the deleterious effects associated with the intracellular sodium and calcium overload that accompany and may promote myocardial ischemia. Ranolazine is available as an anti-anginal agent for patients with chronic angina. The Metabolic Efficiency With Ranolazine for Less Ischemia in Non-ST-Elevation Acute Coronary Syndromes (MERLIN)-TIMI 36 trial demonstrated the safety of ranolazine in patients after ACS and also showed it's anti-arrhythmic properties. In addition to the safety properties of ranolazine, the study showed that ranolazine had a significant anti-ischemic effect and patient's on therapeutic dosing.
In an analysis of the 6560 patients in MERLIN-TIMI 36, using a digital continuous electrocardiographic Holter monitor for ischemia (Lifecard CF, Delmar Reynolds was applied to patients at the time of randomization and remained in place for 7 days, including after hospital discharge). Findings showed that patients treated with ranolazine had significantly lower incidences of arrhythmias. Specifically, fewer patients had an episode of ventricular tachycardia lasting ≥8 beats, supraventricular tachycardia or new-onset atrial fibrillation. In addition, pauses ≥3 seconds were less frequent with ranolazine. Based on this report, further studies of the antiarrhythmic effects of ranolazine were warranted.
Premature ventricular complexes (PVCs) are a frequent occurrence in the presence of ischemic heart disease. A very high PVC burden can be symptomatic or occasionally result in a cardiomyopathy. The mechanism by which PVCs cause cardiomyopathies or symptoms is not well understood, but may be related to an increase in myocardial strain or demand. Reduction in PVC burden has been associated with both improvement in ejection fraction and symptoms. Ranolazine has also been shown to reduce PVC burden in patients already on optimal medical therapy. The estimate of the minimal number of PVCs required to be associated with a cardiomyopathy is around 10%. In fact, subjects that had evidence for PVCs on baseline 12 lead electrocardiogram were found to have a significantly higher risk of cardiovascular events.
Current strategies for managing complex cardiomyopathies driven by arrhythmias have been complicated by intolerance to medical therapy as well as the requirement for frequent titration and the development of tolerance. Patients with ischemic heart disease have limited options for antiarrhythmic medical therapy. Prior trials of flecainide and eicainide in patients with ischemic heart disease for control of ventricular arrhythmias resulted in a significant and deleterious proarrhythmic effect current options for management line on amiodarone which has significant liver, thyroid, and lung toxicities or sotalol which can have significant bronchospastic effects as well as QT prolongation or tedious and which has to be carefully dose in the setting of renal insufficiency to avoid significant QT prolongation and the risk for proarrhythmia.
While ICD therapy has been appropriate for patients with reduced ejection fraction and evidence for unstable ventricular arrhythmias/sudden cardiac death, frequent or low level ventricular arrhythmias such as nonsustained VT or frequent PVCs would not be treated by ICD therapy. Escalation of traditional nodal therapies such as beta blockers or calcium channel blockers is his often limited by marginal systolic blood pressures and/or symptoms.
With the increasing prevalence of ischemic heart disease, it is critically important to identify therapies that have a neutral response to heart rate and blood pressure, good safety profile, and can reduce ischemia and the burden ventricular arrhythmias. Ultimately, the hope is that they will reduce strain induced ischemic heart changes. To that end, investigation of the effects of ranolazine in patients with ischemic heart disease and an elevated burden of PVCs is of great interest.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Ranolazine
Ranolazine 1000 mg tablet twice daily for 30 days
ranolazine
Ranolazine 1000 mg tablet twice daily for 30 days
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
ranolazine
Ranolazine 1000 mg tablet twice daily for 30 days
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Have the ability to understand and sign a written informed consent form, which must be obtained prior to initiation of study procedures
* History of ischemic heart disease (prior bypass or coronary stenting, documentation on cardiac catheterization, nuclear SPECT imaging, cardiac MR, stress echocardiography, or exercise stress testing). Subjects are not required to have chronic angina to be enrolled in the study
* Elevated PVC burden (1%) on prior Holter/event monitor in previous 12 months or evidence for PVC(s) on baseline ECG within prior 12 months.
* Sexually active females of childbearing potential must agree to utilize effective methods of contraception during heterosexual intercourse throughout the treatment period and for 14 days following discontinuation of the study medication
Exclusion Criteria
* Implantation of ICD or permanent pacemaker within 1 month of screening
* New York Heart Association (NYHA) Class III and IV heart failure or NYHA Class II heart failure with a recent decompensation requiring hospitalization or referral to a specialized heart failure clinic within 4 weeks prior to Screening.
* Myocardial infarction, unstable angina, or coronary artery bypass graft (CABG) surgery within three months prior to Screening or percutaneous coronary intervention (PCI) within 4 weeks prior to Screening
* Clinically significant valvular disease in the opinion of the Investigator
* Stroke within 1 months prior to Screening
* History of serious ventricular arrhythmias (eg, sustained ventricular tachycardia, ventricular fibrillation) within 4 weeks prior to Screening
* Family history of long QT syndrome
* QTc ≥ 500 msec (Bazett) at Screening ECG if in sinus rhythm (SR). If in AF, evidence of QTc ≥ 500 msec (Bazett) within 4 weeks prior to Screening
* Prior heart transplant
* Cardiac ablation within 3 months prior to Screening, or planned ablation during the course of the study
* Need for concomitant treatment during the trial, with drugs or products that are strong inhibitors of CYP3A, or inducers of CYP3A. Such medications should be discontinued 5-half- lives prior to the Run-in period
* Use of grapefruit juice or Seville orange juice during the study
* Use of drugs that prolong the QT interval
* Previous use of ranolazine within 2 months prior to screening
* Prior use of ranolazine which was discontinued for safety or tolerability
* Use of dabigatran during the study
* Use of a greater than 1000 mg total daily dose of metformin during the study
* Hypokalemia (serum potassium \< 3.5 mEq/L) at Screening that cannot be corrected to a level of potassium ≥ 3.5 mEq/L prior to randomization
* Moderate and severe hepatic impairment (ie, Child-Pugh Class B and C), abnormal liver function test defined as ALT, AST, or bilirubin \> 2 x ULN at Screening
* Severe renal impairment defined as creatinine clearance ≤ 30 mL/min at Screening
* Females who are pregnant or are breastfeeding
* Exclusion of patients with Contraindications to use of RANEXA, including patients on CYP3A4 inducers/potent inhibitors, and patients with liver cirrhosis
* Exclusion of Patients with CrCl \< 30 mL/min
* Limit dose of RANEXA to 500mg BID in patients on concurrent diltiazem/verapamil
* Limit concurrent simvastatin to 20 mg/day
* In the judgment of the Investigator, any clinically-significant ongoing medical condition that might jeopardize the subject's safety or interfere with the study, including participation in another clinical trial within the previous 30 days using a therapeutic modality which could have potential residual effects that might confound the results of this study
* Any technical issue (device related) which in the judgment of the investigator would disrupt adequate data collection or interpretation
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Gilead Sciences
INDUSTRY
Kent Hospital, Rhode Island
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Chester Hedgepeth, MD, PhD
Chester Hedgepeth, MD, PhD
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Chester M Hedgepeth, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
Brigham and Women's Cardiovascular Associates at Care New England
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Kent Hospital
Warwick, Rhode Island, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Scirica BM, Braunwald E, Belardinelli L, Hedgepeth CM, Spinar J, Wang W, Qin J, Karwatowska-Prokopczuk E, Verheugt FW, Morrow DA. Relationship between nonsustained ventricular tachycardia after non-ST-elevation acute coronary syndrome and sudden cardiac death: observations from the metabolic efficiency with ranolazine for less ischemia in non-ST-elevation acute coronary syndrome-thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation. 2010 Aug 3;122(5):455-62. doi: 10.1161/CIRCULATIONAHA.110.937136. Epub 2010 Jul 19.
Scirica BM, Morrow DA, Budaj A, Dalby AJ, Mohanavelu S, Qin J, Aroesty J, Hedgepeth CM, Stone PH, Braunwald E. Ischemia detected on continuous electrocardiography after acute coronary syndrome: observations from the MERLIN-TIMI 36 (Metabolic Efficiency With Ranolazine for Less Ischemia in Non-ST-Elevation Acute Coronary Syndrome-Thrombolysis In Myocardial Infarction 36) trial. J Am Coll Cardiol. 2009 Apr 21;53(16):1411-21. doi: 10.1016/j.jacc.2008.12.053.
Kumar K, Nearing BD, Carvas M, Nascimento BC, Acar M, Belardinelli L, Verrier RL. Ranolazine exerts potent effects on atrial electrical properties and abbreviates atrial fibrillation duration in the intact porcine heart. J Cardiovasc Electrophysiol. 2009 Jul;20(7):796-802. doi: 10.1111/j.1540-8167.2009.01437.x. Epub 2009 Feb 27.
Scirica BM, Morrow DA, Hod H, Murphy SA, Belardinelli L, Hedgepeth CM, Molhoek P, Verheugt FW, Gersh BJ, McCabe CH, Braunwald E. Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome: results from the Metabolic Efficiency With Ranolazine for Less Ischemia in Non ST-Elevation Acute Coronary Syndrome Thrombolysis in Myocardial Infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation. 2007 Oct 9;116(15):1647-52. doi: 10.1161/CIRCULATIONAHA.107.724880. Epub 2007 Sep 5.
Kunadian B, Sutton AG, Vijayalakshmi K, Thornley AR, Gray JC, Grech ED, Hall JA, Harcombe AA, Wright RA, Smith RH, Murphy JJ, Shyam-Sundar A, Stewart MJ, Davies A, Linker NJ, de Belder MA. Early invasive versus conservative treatment in patients with failed fibrinolysis--no late survival benefit: the final analysis of the Middlesbrough Early Revascularisation to Limit Infarction (MERLIN) randomized trial. Am Heart J. 2007 May;153(5):763-71. doi: 10.1016/j.ahj.2007.02.021.
Ephrem G, Levine M, Friedmann P, Schweitzer P. The prognostic significance of frequency and morphology of premature ventricular complexes during ambulatory holter monitoring. Ann Noninvasive Electrocardiol. 2013 Mar;18(2):118-25. doi: 10.1111/anec.12010. Epub 2012 Nov 22.
Yokokawa M, Good E, Crawford T, Chugh A, Pelosi F Jr, Latchamsetty R, Jongnarangsin K, Armstrong W, Ghanbari H, Oral H, Morady F, Bogun F. Recovery from left ventricular dysfunction after ablation of frequent premature ventricular complexes. Heart Rhythm. 2013 Feb;10(2):172-5. doi: 10.1016/j.hrthm.2012.10.011. Epub 2012 Oct 23.
Ban JE, Park HC, Park JS, Nagamoto Y, Choi JI, Lim HE, Park SW, Kim YH. Electrocardiographic and electrophysiological characteristics of premature ventricular complexes associated with left ventricular dysfunction in patients without structural heart disease. Europace. 2013 May;15(5):735-41. doi: 10.1093/europace/eus371. Epub 2012 Nov 29.
Lee V, Hemingway H, Harb R, Crake T, Lambiase P. The prognostic significance of premature ventricular complexes in adults without clinically apparent heart disease: a meta-analysis and systematic review. Heart. 2012 Sep;98(17):1290-8. doi: 10.1136/heartjnl-2012-302005. Epub 2012 Jul 10.
Baman TS, Lange DC, Ilg KJ, Gupta SK, Liu TY, Alguire C, Armstrong W, Good E, Chugh A, Jongnarangsin K, Pelosi F Jr, Crawford T, Ebinger M, Oral H, Morady F, Bogun F. Relationship between burden of premature ventricular complexes and left ventricular function. Heart Rhythm. 2010 Jul;7(7):865-9. doi: 10.1016/j.hrthm.2010.03.036. Epub 2010 Mar 27.
Le VV, Mitiku T, Hadley D, Myers J, Froelicher VF. Rest premature ventricular contractions on routine ECG and prognosis in heart failure patients. Ann Noninvasive Electrocardiol. 2010 Jan;15(1):56-62. doi: 10.1111/j.1542-474X.2009.00340.x.
John RM, Tedrow UB, Koplan BA, Albert CM, Epstein LM, Sweeney MO, Miller AL, Michaud GF, Stevenson WG. Ventricular arrhythmias and sudden cardiac death. Lancet. 2012 Oct 27;380(9852):1520-9. doi: 10.1016/S0140-6736(12)61413-5.
Mountantonakis SE, Hutchinson MD. Indications for implantable cardioverter-defibrillator placement in ischemic cardiomyopathy and after myocardial infarction. Curr Heart Fail Rep. 2011 Dec;8(4):252-9. doi: 10.1007/s11897-011-0069-1.
Hickey KT, Reiffel J, Sciacca RR, Whang W, Biviano A, Baumeister M, Castillo C, Talathothi J, Garan H. Correlating perceived arrhythmia symptoms and quality of life in an older population with heart failure: a prospective, single centre, urban clinic study. J Clin Nurs. 2013 Feb;22(3-4):434-44. doi: 10.1111/j.1365-2702.2012.04307.x.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
IN-US-259-1341
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.