Spatial Analysis and Validation of Glioblastoma on 7 T MRI
NCT ID: NCT02062372
Last Updated: 2018-08-17
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
TERMINATED
NA
5 participants
INTERVENTIONAL
2014-12-10
2018-02-05
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The radiation target volume encompasses both the contrast-enhanced lesion on T1-weighted magnetic resonance imaging (MRI), plus a 1.5 - 2 cm isotropic margin in order to include microscopic speculated growth. These margins result in a high dose to surrounding healthy appearing brain tissue. Moreover, the short progression-free survival indicates a possible geographical miss. There is a clear need for novel imaging techniques in order to better determine the degree of tumour extent at the time of treatment and to minimize the dose to healthy brain tissue.
The development of Ultra-High Field (UHF) MRI at a magnetic field strength of 7 Tesla (T) provides an increased ability to detect, quantify and monitor tumour activity and determine post-treatment effects on the normal brain tissue as a result of a higher resolution, greater coverage and shorter scan times compared to 1.5 T and 3 T images. Up to now, only few investigators have examined the use of UHF MRI in patients with malignant brain tumours. These studies show its potential to assess tumour microvasculature and post-radiation effects such as microhaemorrhages.
This study analyzes the accuracy of the 7T MRI in identifying the gross tumour volume (GTV) in patients with an untreated GBM by comparing biopsy results to 7T images. These biopsies will be taken from suspected regions of GBM based on 7T MRI that do not appear as such on 3T MRI. We hypothesize that with the 7T MRI the GTV can be more accurately and extensively identified when compared to the 3T MRI.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Glioblastoma: Validation and Comparison Between Primary Tumor and Its Murine Model
NCT02904525
MRI Scans in Evaluating the Effects of Radiation Therapy and Chemotherapy in Patients With Newly Diagnosed Glioblastoma Multiforme or Anaplastic Glioma
NCT00756106
Radiomics for Prediction of Survival in GBM
NCT02666066
FET-PET and Multiparametric MRI for High-grade Glioma Patients Undergoing Radiotherapy
NCT03370926
Comparison of Standard Neuronavigation With Intraoperative Magnetic Resonance Imaging (MRI) for the Neurosurgical Treatment of Malignant Brain Tumors
NCT00943007
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
DIAGNOSTIC
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Biopsy
Subjects will receive a 7 T MRI and one additional biopsy to their standard diagnostic biopsies
7 T MRI
Overview Technical DetailsField strength: 7 Tesla Bore size: 60 cm System length: 317,5 cm RF power: 7,5 kW / 8x1 kW Gradient strength: SC 72 Gradients (max. 70 mT/m @ 200 T/m/s) Helium Consumption: Zero Helium boil-off technology
Biopsy
During surgery patients will receive standard biopsies plus one study biopsy from a region of interest. The neuro-surgeon will determine the feasibility of the extra biopsy and the optimal biopsy tract. A screen capture from the neuronavigation system will be saved for each biopsy to relate the findings on 3T and 7T MRI to histopathology.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
7 T MRI
Overview Technical DetailsField strength: 7 Tesla Bore size: 60 cm System length: 317,5 cm RF power: 7,5 kW / 8x1 kW Gradient strength: SC 72 Gradients (max. 70 mT/m @ 200 T/m/s) Helium Consumption: Zero Helium boil-off technology
Biopsy
During surgery patients will receive standard biopsies plus one study biopsy from a region of interest. The neuro-surgeon will determine the feasibility of the extra biopsy and the optimal biopsy tract. A screen capture from the neuronavigation system will be saved for each biopsy to relate the findings on 3T and 7T MRI to histopathology.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Suspected GBM on diagnostic MRI
* Eligible for biopsy
* Minimum age 18 years or older
* World Health Organization (WHO) Performance scale ≤2
* American Society of Anaesthesiologist (ASA) class ≤ 3
* Understanding of the Dutch language
* Ability to comply to study procedure
Exclusion Criteria
* Tumour location deemed unfit for extra biopsies
* Prior radiotherapy to the skull
* Prior chemotherapy
* World Health Organization (WHO) Performance scale ≥ 3
* American Society of Anaesthesiologist (ASA) class ≥ 3
* Eligibility for immediate debulking
* Contra-indications for gadolinium
* Contra-indications for the MRI
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
The Limburg University Fund
UNKNOWN
Maastricht Radiation Oncology
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Philippe Lambin, prof
Role: PRINCIPAL_INVESTIGATOR
Maastricht Radiation Oncology
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Maastricht Radiation Oncology (MAASTRO clinic)
Maastricht, Limburg, Netherlands
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Christoforidis GA, Yang M, Abduljalil A, Chaudhury AR, Newton HB, McGregor JM, Epstein CR, Yuh WT, Watson S, Robitaille PM. "Tumoral pseudoblush" identified within gliomas at high-spatial-resolution ultrahigh-field-strength gradient-echo MR imaging corresponds to microvascularity at stereotactic biopsy. Radiology. 2012 Jul;264(1):210-7. doi: 10.1148/radiol.12110799. Epub 2012 May 24.
Lupo JM, Chuang CF, Chang SM, Barani IJ, Jimenez B, Hess CP, Nelson SJ. 7-Tesla susceptibility-weighted imaging to assess the effects of radiotherapy on normal-appearing brain in patients with glioma. Int J Radiat Oncol Biol Phys. 2012 Mar 1;82(3):e493-500. doi: 10.1016/j.ijrobp.2011.05.046. Epub 2011 Oct 12.
Grossman R, Sadetzki S, Spiegelmann R, Ram Z. Haemorrhagic complications and the incidence of asymptomatic bleeding associated with stereotactic brain biopsies. Acta Neurochir (Wien). 2005 Jun;147(6):627-31; discussion 631. doi: 10.1007/s00701-005-0495-5. Epub 2005 Apr 15.
Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO; European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups; National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009 May;10(5):459-66. doi: 10.1016/S1470-2045(09)70025-7. Epub 2009 Mar 9.
Halperin EC, Bentel G, Heinz ER, Burger PC. Radiation therapy treatment planning in supratentorial glioblastoma multiforme: an analysis based on post mortem topographic anatomy with CT correlations. Int J Radiat Oncol Biol Phys. 1989 Dec;17(6):1347-50. doi: 10.1016/0360-3016(89)90548-8.
Oppitz U, Maessen D, Zunterer H, Richter S, Flentje M. 3D-recurrence-patterns of glioblastomas after CT-planned postoperative irradiation. Radiother Oncol. 1999 Oct;53(1):53-7. doi: 10.1016/s0167-8140(99)00117-6.
Lupo JM, Li Y, Hess CP, Nelson SJ. Advances in ultra-high field MRI for the clinical management of patients with brain tumors. Curr Opin Neurol. 2011 Dec;24(6):605-15. doi: 10.1097/WCO.0b013e32834cd495.
Moenninghoff C, Maderwald S, Theysohn JM, Kraff O, Ladd ME, El Hindy N, van de Nes J, Forsting M, Wanke I. Imaging of adult astrocytic brain tumours with 7 T MRI: preliminary results. Eur Radiol. 2010 Mar;20(3):704-13. doi: 10.1007/s00330-009-1592-2. Epub 2009 Sep 18.
Theysohn JM, Maderwald S, Kraff O, Moenninghoff C, Ladd ME, Ladd SC. Subjective acceptance of 7 Tesla MRI for human imaging. MAGMA. 2008 Mar;21(1-2):63-72. doi: 10.1007/s10334-007-0095-x. Epub 2007 Dec 7.
Chakeres DW, Kangarlu A, Boudoulas H, Young DC. Effect of static magnetic field exposure of up to 8 Tesla on sequential human vital sign measurements. J Magn Reson Imaging. 2003 Sep;18(3):346-52. doi: 10.1002/jmri.10367.
Duchin Y, Abosch A, Yacoub E, Sapiro G, Harel N. Feasibility of using ultra-high field (7 T) MRI for clinical surgical targeting. PLoS One. 2012;7(5):e37328. doi: 10.1371/journal.pone.0037328. Epub 2012 May 17.
Dammann P, Kraff O, Wrede KH, Ozkan N, Orzada S, Mueller OM, Sandalcioglu IE, Sure U, Gizewski ER, Ladd ME, Gasser T. Evaluation of hardware-related geometrical distortion in structural MRI at 7 Tesla for image-guided applications in neurosurgery. Acad Radiol. 2011 Jul;18(7):910-6. doi: 10.1016/j.acra.2011.02.011. Epub 2011 May 5.
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007 Aug;114(2):97-109. doi: 10.1007/s00401-007-0243-4. Epub 2007 Jul 6.
Kubben PL, Wesseling P, Lammens M, Schijns OE, Ter Laak-Poort MP, van Overbeeke JJ, van Santbrink H. Correlation between contrast enhancement on intraoperative magnetic resonance imaging and histopathology in glioblastoma. Surg Neurol Int. 2012;3:158. doi: 10.4103/2152-7806.105097. Epub 2012 Dec 26.
Umutlu L, Theysohn N, Maderwald S, Johst S, Lauenstein TC, Moenninghoff C, Goericke SL, Dammann P, Wrede KH, Ladd ME, Forsting M, Schlamann M. 7 Tesla MPRAGE imaging of the intracranial arterial vasculature: nonenhanced versus contrast-enhanced. Acad Radiol. 2013 May;20(5):628-34. doi: 10.1016/j.acra.2012.12.012. Epub 2013 Mar 6.
Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26: 297 - 302.
Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJ, Dekker A, Fenstermacher D, Goldgof DB, Hall LO, Lambin P, Balagurunathan Y, Gatenby RA, Gillies RJ. Radiomics: the process and the challenges. Magn Reson Imaging. 2012 Nov;30(9):1234-48. doi: 10.1016/j.mri.2012.06.010. Epub 2012 Aug 13.
Related Links
Access external resources that provide additional context or updates about the study.
Related Info
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
47894
Identifier Type: OTHER
Identifier Source: secondary_id
1335-1812-intern-6485
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.