Investigation of the Genetic and Environmental Determinants of MP Including Response to Supplementation
NCT ID: NCT01778231
Last Updated: 2019-08-14
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
56 participants
INTERVENTIONAL
2011-03-31
2013-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Carotenoid Supplementation and Retinal Health in Healthy Adults
NCT07314411
Macular Pigment and Glare Disability
NCT00909090
The Influence of Lutein Supplements on Age-related Macular Degeneration
NCT01042860
Effects of Lutein Supplementation on Macular Pigment Optical Density and Visual Acuity in Patients With Age-related Macular Degeneration
NCT00879671
Role of Xanthophylls in Visual Function
NCT05794074
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Much interest surrounds macular pigment due to its putative role in protecting the macula from oxidative stress and age-related degenerative change2, yet much is still unknown about factors that determine its uptake and deposition. Large inter-individual differences in MP have been demonstrated with several large population based studies showing that peak macular pigment density can vary by over a factor of 10 between individuals3-4. Subsequent studies have suggested a number of parameters such as age, diet, percentage body fat, gender and tobacco use5-9 as determinants of MP, however these only account for approximately a third of the variance leaving a significant proportion unexplained.
Lutein and Zeaxanthin (L and Z), constituents of MP, cannot be synthesized by the body and so are entirely dietary in origin. They are present in foods such as collard greens, spinach and Brussels sprouts10. Variation in the bitter-taste receptor gene, TAS2R38 confers the ability to taste 6-n-propylthiouracil (PROP) and phenylthiocarbamide (PTC) which is present in many of these foods11. People who taste PTC with a greater intensity are more likely to avoid these foods and therefore we hypothesize they may have lower levels of macular pigment. Thus, this study may help to identify a group at higher risk of macular degeneration.
Despite MP's dietary origin only modest correlations exist with serum and dietary levels of L and Z, and although the level of MP can be augmented in most people by diet or supplementation the response is variable and not always correlated with baseline level. Most supplementation studies identify a sub-group of "retinal non-responders"12 in which serum values of the carotenoids have risen, yet no change is found in macular pigment, the reason for this is not clear. The first part of our study will provide a well-phenotyped group in which to explore this further. Several studies have also shown that peak macular pigment levels are strongly heritable13-14 suggesting genetics may play an important role. Although no gene has currently been clearly identified the ApoE gene has been suggested to show an association with macular pigment level. A supplementation study in this population will be able to determine whether the genes identified on a cross-sectional basis do determine uptake of the nutritional supplement. We may also be able to identify specific demographic or lifestyle factors of non-responders which may help to explain the phenomenon.
1. Carpentier S, Knaus M, Suh M. Associations between Lutein, Zeaxanthin, and Age-Related Macular Degeneration: An Overview. Clinical Reviews in Food Science and Nutrition. 2009 49:313-326
2. Whitehead AJ, Mares J, Danis RP. Macular Pigment: A Review of Current Knowledge. Arch Opthamol. July 2006; 124: 1038-1045
3. Ciulla TA, Curran-Celantano J, Cooper DA, et al. Macular pigment optical density in a midwestern sample. Ophthalmology. Apr 2001;108(4):730-737.
4. Hammond BR, Jr., Caruso-Avery M. Macular pigment optical density in a Southwestern sample. Invest Ophthalmol Vis Sci. May 2000;41(6):1492-1497.
5. Hammond BR, Jr., Curran-Celentano J, Judd S, et al. Sex differences in macular pigment optical density: relation to plasma carotenoid concentrations and dietary patterns. Vision Res. Jul 1996;36(13):2001-2012.
6. Hammond BR, Jr., Wooten BR, Snodderly DM. Cigarette smoking and retinal carotenoids: implications for age-related macular degeneration. Vision Res. Sep 1996;36(18):3003-3009.
7. Ciulla TA, Hammond BR, Jr. Macular pigment density and aging, assessed in the normal elderly and those with cataracts and age-related macular degeneration. Am J Ophthalmol. Oct 2004;138(4):582-587.
8. Curran-Celentano J, Hammond BR, Jr., Ciulla TA, Cooper DA, Pratt LM, Danis RB. Relation between dietary intake, serum concentrations, and retinal concentrations of lutein and zeaxanthin in adults in a Midwest population. Am J Clin Nutr. Dec 2001;74(6):796-802.
9. Nolan J, O'Donovan O, Kavanagh H, et al. Macular pigment and percentage of body fat. Invest Ophthalmol Vis Sci. Nov 2004;45(11):3940-3950.
10. Carpentier S, Knaus M, Suh M. Associations between Lutein, Zeaxanthin, and Age-Related Macular Degeneration: An Overview. Critical Reviews in Food Science and Nutrition. 2009; 49(4): 313-326
11. Bachmanov A, Beauchamp G. Taste Receptor Genes. Annual Review of Nutrition. 2007.27:389-414
12. Hammond BR, Jr., Johnson EJ, Russell RM, et al. Dietary modification of human macular pigment density. Invest Ophthalmol Vis Sci. Aug 1997;38(9):1795-1801.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
SINGLE_GROUP
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Vitamin Supplement
1 capsule of Nutrof Total made by Laboratories Thea for 16 weeks
Nutrof Total
Antioxidant and trace element supplement
Inert oil capsule
1 capsule daily for 16 weeks
Placebo
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Nutrof Total
Antioxidant and trace element supplement
Placebo
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* male or female,
* aged 18-50 years
Exclusion Criteria
* inability to give informed written consent,
* any other health problem which would interfere with ability to adhere to the study protocol.
18 Years
50 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Queen's University, Belfast
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Ruth Hogg
Dr Ruth Hogg
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Centre for Public Health
Belfast, Antrim, United Kingdom
Countries
Review the countries where the study has at least one active or historical site.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
11/05v1
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.