Intraoperative OCT Guidance of Intraocular Surgery

NCT ID: NCT01588041

Last Updated: 2023-04-19

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

269 participants

Study Classification

OBSERVATIONAL

Study Start Date

2009-09-30

Study Completion Date

2018-08-08

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The purpose of this study is to investigate the use of optical coherence tomography imaging integrated with an operating microscope (MIOCT) in ophthalmic surgeries.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Optical Coherence Tomography (OCT) is used to capture reproducible ocular morphology and cross-sectional tissue measurements in-vivo in a rapid, non-invasive, non-contact manner. It has displaced ophthalmoscopy and stereo photography for clinical assessment and documentation of retinal microanatomy including thickness, cystoid structures, subretinal fluid and retinal traction.(1) Spectral Domain Optical Coherence Tomography (SDOCT) has the speed and resolution required for real-time noninvasive three-dimensional imaging of critical pathology.

While modern ophthalmic surgery has benefited from rapid advances in instrumentation and techniques (2-6), the basic principles of the stereo zoom operating microscope have not changed (except for increased automation) since the 1930's. (7-9) The ability to better resolve tissue microanatomy through real-time micro-imaging would have a dramatic impact on ophthalmic surgeon's capabilities, foster the development of new surgical techniques, and potentially improve surgical outcomes.

Complementary to microscope integrated OCT (MIOCT) testing, we use a commercial hand-held SDOCT instrument (Bioptigen, Inc.) during pauses in both anterior segment and retinal surgery to document surgical process.

While both the handheld instrument and Duke's Generation 1 (G1) MIOCT prototype have demonstrated that high-quality OCT imaging is possible during surgery, in both cases control of the OCT scan location and display of the real-time image data are managed on the OCT system console, located up to several feet from the surgeon. Thus, the potential dramatic impact of this technology on ophthalmic surgery is constrained by its limited integration with the surgical environment. The primary technical goal of this project is to address this issue through novel advances in OCT technology, automated tracking of surgical instruments and tools, and fusion of OCT controls, images and measurements into a seamless interface for the surgeon.

This study will facilitate future quality improvement processes based on intraoperative data matched to postoperative outcomes. Intraoperative OCT feedback will revolutionize communication in surgical research, clinical communication, surgeon training and continuing education, and will provide measurable data regarding disease patterns and intraoperative response, novel instrument and adjuvant use.

This study will prospectively examine the surgical utility of MIOCT in retinal and anterior segment surgery. A total of 722 subjects will be enrolled at 2 sites, Duke Eye Center and Cole Eye Institute. Of those, there will be 500 retina subjects and 222 anterior segment subjects. There will be a small number of normal subjects, who are not undergoing eye surgery, enrolled in this portion of this study for non-surgical study of the MIOCT system imaging, particularly for Generation 2 (G2) MIOCT. Rate of recruitment: 460 retina subjects will be enrolled at the rate of approximately 115 per year (\~57 per year at both Duke and Cole) for years 1-4 and approximately 40 subjects will be enrolled in year 5 (adding up to a total of 500 subjects).

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Eye Manifestations

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Vitreoretinal Interface Disease Group

A minimum of 50 subjects with vitreoretinal interface disease will be imaged with MIOCT prior to surgery, during surgical maneuvers, during a normal pause in surgery, and at 2 post-operative follow-up visits.

No interventions assigned to this group

Macular Hole Group

A minimum of 50 subjects with macular hole with be imaged with MIOCT prior to surgery, during surgical maneuvers, during a normal pause in surgery, and at 2 post-operative follow-up visits.

No interventions assigned to this group

Retinal Detachment Group

A minimum of 50 subjects with retinal detachment will be imaged with MIOCT prior to surgery, during surgical maneuvers, during a normal pause in surgery, and at 2 post-operative follow-up visits.

No interventions assigned to this group

Diabetic Retinopathy Group

A minimum of 50 subjects with diabetic retinopathy will be imaged with MIOCT prior to surgery, during surgical maneuvers, during a normal pause in surgery, and at 2 post-operative follow-up visits.

No interventions assigned to this group

Rare Related Macular Disease Group

Up to 70 subjects with rare related macular diseases will be imaged with MIOCT prior to surgery, during surgical maneuvers, during a normal pause in surgery, and at 2 post-operative follow-up visits.

No interventions assigned to this group

Generation 2 MIOCT Transition Group

80 of the subjects recruited in years 1 through 5 (40 normal, 40 diseased) will be imaged with both the generation 1 MIOCT and the generation 2 MIOCT systems prior to surgery, during surgical maneuvers, during a normal pause in surgery, and at 2 post-operative follow-up visits.

No interventions assigned to this group

Endothelial Keratoplasty Group

150 subjects undergoing Descemet Stripping Endothelial Keratoplasty (DSEK) will be imaged with MIOCT at the conclusion of the surgical procedure and may be imaged during follow-up visits.

No interventions assigned to this group

Anterior Lamellar Keratoplasty Group

150 subjects undergoing Deep Anterior Lamellar Keratoplasty (DALK) will be imaged with MIOCT at the conclusion of the surgical procedure and may be imaged during follow-up visits.

No interventions assigned to this group

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. subjects undergoing surgery for vitreoretinal interface disease
2. subjects undergoing surgery for macular hole
3. subjects undergoing surgery for retinal detachment
4. subjects undergoing surgery for diabetic retinopathy with macular edema and/or traction detachments
5. subjects undergoing surgery for epiretinal membranes
6. subjects undergoing surgery for rare related macular diseases like myopic schisis.
7. subjects undergoing endothelial keratoplasty or anterior lamellar keratoplasty
8. subjects with normal ocular pathology enrolled as controls

Exclusion Criteria

1\. Any ocular disease that restricts the ability to perform MIOCT scanning.
Minimum Eligible Age

0 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Eye Institute (NEI)

NIH

Sponsor Role collaborator

Duke University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Cynthia A Toth, MD

Role: PRINCIPAL_INVESTIGATOR

Duke University Health System, Department of Ophthalmology

Joseph A Izatt, PhD

Role: PRINCIPAL_INVESTIGATOR

Duke University Department of Biomedical Engineering

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Duke University Eye Center

Durham, North Carolina, United States

Site Status

Cole Eye Institute at the Cleveland Clinic Lemer College of Medicine

Cleveland, Ohio, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Mirza RG, Johnson MW, Jampol LM. Optical coherence tomography use in evaluation of the vitreoretinal interface: a review. Surv Ophthalmol. 2007 Jul-Aug;52(4):397-421. doi: 10.1016/j.survophthal.2007.04.007.

Reference Type BACKGROUND
PMID: 17574065 (View on PubMed)

Machemer R. The development of pars plana vitrectomy: a personal account. Graefes Arch Clin Exp Ophthalmol. 1995 Aug;233(8):453-68. doi: 10.1007/BF00183425. No abstract available.

Reference Type BACKGROUND
PMID: 8537019 (View on PubMed)

Tan DT, Mehta JS. Future directions in lamellar corneal transplantation. Cornea. 2007 Oct;26(9 Suppl 1):S21-8. doi: 10.1097/ICO.0b013e31812f685c.

Reference Type BACKGROUND
PMID: 17881911 (View on PubMed)

Singh MS, MacLaren RE. Stem cells as a therapeutic tool for the blind: biology and future prospects. Proc Biol Sci. 2011 Oct 22;278(1721):3009-16. doi: 10.1098/rspb.2011.1028. Epub 2011 Aug 3.

Reference Type BACKGROUND
PMID: 21813553 (View on PubMed)

Weiland JD, Cho AK, Humayun MS. Retinal prostheses: current clinical results and future needs. Ophthalmology. 2011 Nov;118(11):2227-37. doi: 10.1016/j.ophtha.2011.08.042.

Reference Type BACKGROUND
PMID: 22047893 (View on PubMed)

Shin JY, Yu HG. Visual prognosis and spectral-domain optical coherence tomography findings of myopic foveoschisis surgery using 25-gauge transconjunctival sutureless vitrectomy. Retina. 2012 Mar;32(3):486-92. doi: 10.1097/IAE.0b013e31822058d1.

Reference Type BACKGROUND
PMID: 21955988 (View on PubMed)

Machemer R, Parel JM. An improved microsurgical ceiling-mounted unit and automated television. Am J Ophthalmol. 1978 Feb;85(2):205-9. doi: 10.1016/s0002-9394(14)75949-5.

Reference Type BACKGROUND
PMID: 623191 (View on PubMed)

Parel JM, Machemer R, Aumayr W. A new concept for vitreous surgery. 5. An automated operating microscope. Am J Ophthalmol. 1974 Feb;77(2):161-8. doi: 10.1016/0002-9394(74)90668-0. No abstract available.

Reference Type BACKGROUND
PMID: 4812085 (View on PubMed)

Hahn P, Carrasco-Zevallos O, Cunefare D, Migacz J, Farsiu S, Izatt JA, Toth CA. Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device. Transl Vis Sci Technol. 2015 Jul 1;4(4):1. doi: 10.1167/tvst.4.4.1. eCollection 2015 Jul.

Reference Type BACKGROUND
PMID: 26175961 (View on PubMed)

Nam DH, Desouza PJ, Hahn P, Tai V, Sevilla MB, Tran-Viet D, Cunefare D, Farsiu S, Izatt JA, Toth CA. INTRAOPERATIVE SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY IMAGING AFTER INTERNAL LIMITING MEMBRANE PEELING IN IDIOPATHIC EPIRETINAL MEMBRANE WITH CONNECTING STRANDS. Retina. 2015 Aug;35(8):1622-30. doi: 10.1097/IAE.0000000000000534.

Reference Type BACKGROUND
PMID: 25829349 (View on PubMed)

Kuo AN, Carrasco-Zevallos O, Toth CA, Izatt JA. Caveats to obtaining retinal topography with optical coherence tomography. Invest Ophthalmol Vis Sci. 2014 Sep 11;55(9):5730-1. doi: 10.1167/iovs.14-15212. No abstract available.

Reference Type BACKGROUND
PMID: 25213121 (View on PubMed)

Folgar FA, Yuan EL, Farsiu S, Toth CA. Lateral and axial measurement differences between spectral-domain optical coherence tomography systems. J Biomed Opt. 2014 Jan;19(1):16014. doi: 10.1117/1.JBO.19.1.016014.

Reference Type BACKGROUND
PMID: 24441877 (View on PubMed)

Kuo AN, McNabb RP, Chiu SJ, El-Dairi MA, Farsiu S, Toth CA, Izatt JA. Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures. Am J Ophthalmol. 2013 Aug;156(2):304-11. doi: 10.1016/j.ajo.2013.03.012. Epub 2013 May 6.

Reference Type BACKGROUND
PMID: 23659972 (View on PubMed)

Hahn P, Migacz J, O'Donnell R, Day S, Lee A, Lin P, Vann R, Kuo A, Fekrat S, Mruthyunjaya P, Postel EA, Izatt JA, Toth CA. Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device. Retina. 2013 Jul-Aug;33(7):1328-37. doi: 10.1097/IAE.0b013e3182831293.

Reference Type BACKGROUND
PMID: 23538579 (View on PubMed)

Ehlers JP, Tao YK, Farsiu S, Maldonado R, Izatt JA, Toth CA. Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system. Retina. 2013 Jan;33(1):232-6. doi: 10.1097/IAE.0b013e31826e86f5. No abstract available.

Reference Type BACKGROUND
PMID: 23190928 (View on PubMed)

Hahn P, Migacz J, O'Connell R, Izatt JA, Toth CA. Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system. Graefes Arch Clin Exp Ophthalmol. 2013 Jan;251(1):213-20. doi: 10.1007/s00417-012-2052-2. Epub 2012 May 16.

Reference Type BACKGROUND
PMID: 22585009 (View on PubMed)

Tao YK, Ehlers JP, Toth CA, Izatt JA. Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery. Opt Lett. 2010 Oct 15;35(20):3315-7. doi: 10.1364/OL.35.003315.

Reference Type BACKGROUND
PMID: 20967051 (View on PubMed)

Ehlers JP, Gupta PK, Farsiu S, Maldonado R, Kim T, Toth CA, Mruthyunjaya P. Evaluation of contrast agents for enhanced visualization in optical coherence tomography. Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6614-9. doi: 10.1167/iovs.10-6195. Epub 2010 Nov 4.

Reference Type BACKGROUND
PMID: 21051711 (View on PubMed)

Ehlers JP, Tao YK, Farsiu S, Maldonado R, Izatt JA, Toth CA. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. Invest Ophthalmol Vis Sci. 2011 May 16;52(6):3153-9. doi: 10.1167/iovs.10-6720.

Reference Type BACKGROUND
PMID: 21282565 (View on PubMed)

Hahn P, Migacz J, O'Connell R, Maldonado RS, Izatt JA, Toth CA. The use of optical coherence tomography in intraoperative ophthalmic imaging. Ophthalmic Surg Lasers Imaging. 2011 Jul;42 Suppl(0):S85-94. doi: 10.3928/15428877-20110627-08.

Reference Type BACKGROUND
PMID: 21790116 (View on PubMed)

Ehlers JP, Kernstine K, Farsiu S, Sarin N, Maldonado R, Toth CA. Analysis of pars plana vitrectomy for optic pit-related maculopathy with intraoperative optical coherence tomography: a possible connection with the vitreous cavity. Arch Ophthalmol. 2011 Nov;129(11):1483-6. doi: 10.1001/archophthalmol.2011.316.

Reference Type BACKGROUND
PMID: 22084218 (View on PubMed)

Pasricha ND, Shieh C, Carrasco-Zevallos OM, Keller B, Izatt JA, Toth CA, Kuo AN. Real-Time Microscope-Integrated OCT to Improve Visualization in DSAEK for Advanced Bullous Keratopathy. Cornea. 2015 Dec;34(12):1606-10. doi: 10.1097/ICO.0000000000000661.

Reference Type BACKGROUND
PMID: 26509766 (View on PubMed)

Viehland C, Keller B, Carrasco-Zevallos OM, Nankivil D, Shen L, Mangalesh S, Viet du T, Kuo AN, Toth CA, Izatt JA. Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT. Biomed Opt Express. 2016 Apr 12;7(5):1815-29. doi: 10.1364/BOE.7.001815. eCollection 2016 May 1.

Reference Type BACKGROUND
PMID: 27231623 (View on PubMed)

Shen L, Carrasco-Zevallos O, Keller B, Viehland C, Waterman G, Hahn PS, Kuo AN, Toth CA, Izatt JA. Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography. Biomed Opt Express. 2016 Apr 6;7(5):1711-26. doi: 10.1364/BOE.7.001711. eCollection 2016 May 1.

Reference Type BACKGROUND
PMID: 27231616 (View on PubMed)

Seider MI, Tran-Viet D, Toth CA. MACULAR PSEUDO-HOLE IN SHAKEN BABY SYNDROME: UNDERSCORING THE UTILITY OF OPTICAL COHERENCE TOMOGRAPHY UNDER ANESTHESIA. Retin Cases Brief Rep. 2016 Summer;10(3):283-5. doi: 10.1097/ICB.0000000000000251.

Reference Type BACKGROUND
PMID: 26655385 (View on PubMed)

Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Seider MI, Izatt JA, Toth CA. Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT37-50. doi: 10.1167/iovs.16-19277.

Reference Type BACKGROUND
PMID: 27409495 (View on PubMed)

Todorich B, Shieh C, DeSouza PJ, Carrasco-Zevallos OM, Cunefare DL, Stinnett SS, Izatt JA, Farsiu S, Mruthyunjaya P, Kuo AN, Toth CA. Impact of Microscope-Integrated OCT on Ophthalmology Resident Performance of Anterior Segment Surgical Maneuvers in Model Eyes. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT146-53. doi: 10.1167/iovs.15-18818.

Reference Type BACKGROUND
PMID: 27409466 (View on PubMed)

Grewal DS, Carrasco-Zevallos OM, Gunther R, Izatt JA, Toth CA, Hahn P. Intra-operative microscope-integrated swept-source optical coherence tomography guided placement of Argus II retinal prosthesis. Acta Ophthalmol. 2017 Aug;95(5):e431-e432. doi: 10.1111/aos.13123. Epub 2016 Jun 20. No abstract available.

Reference Type BACKGROUND
PMID: 27321093 (View on PubMed)

Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Waterman G, Todorich B, Shieh C, Hahn P, Farsiu S, Kuo AN, Toth CA, Izatt JA. Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography. Sci Rep. 2016 Aug 19;6:31689. doi: 10.1038/srep31689.

Reference Type BACKGROUND
PMID: 27538478 (View on PubMed)

Grewal DS, Bhullar PK, Pasricha ND, Carrasco-Zevallos OM, Viehland C, Keller B, Shen L, Izatt JA, Kuo AN, Toth CA, Mruthyunjaya P. Intraoperative 4-Dimensional Microscope-Integrated Optical Coherence Tomography-Guided 27-Gauge Transvitreal Choroidal Biopsy for Choroidal Melanoma. Retina. 2017 Apr;37(4):796-799. doi: 10.1097/IAE.0000000000001326.

Reference Type BACKGROUND
PMID: 27673716 (View on PubMed)

Pasricha ND, Shieh C, Carrasco-Zevallos OM, Keller B, Cunefare D, Mehta JS, Farsiu S, Izatt JA, Toth CA, Kuo AN. Needle Depth and Big-Bubble Success in Deep Anterior Lamellar Keratoplasty: An Ex Vivo Microscope-Integrated OCT Study. Cornea. 2016 Nov;35(11):1471-1477. doi: 10.1097/ICO.0000000000000948.

Reference Type BACKGROUND
PMID: 27442318 (View on PubMed)

Pasricha ND, Bhullar PK, Shieh C, Carrasco-Zevallos OM, Keller B, Izatt JA, Toth CA, Freedman SF, Kuo AN. Four-dimensional Microscope-Integrated Optical Coherence Tomography to Visualize Suture Depth in Strabismus Surgery. J Pediatr Ophthalmol Strabismus. 2017 Feb 14;54:e1-e5. doi: 10.3928/01913913-20170201-01.

Reference Type BACKGROUND
PMID: 28196266 (View on PubMed)

Chen X, Viehland C, Carrasco-Zevallos OM, Keller B, Vajzovic L, Izatt JA, Toth CA. Microscope-Integrated Optical Coherence Tomography Angiography in the Operating Room in Young Children With Retinal Vascular Disease. JAMA Ophthalmol. 2017 May 1;135(5):483-486. doi: 10.1001/jamaophthalmol.2017.0422.

Reference Type BACKGROUND
PMID: 28384676 (View on PubMed)

Carrasco-Zevallos OM, Viehland C, Keller B, Draelos M, Kuo AN, Toth CA, Izatt JA. Review of intraoperative optical coherence tomography: technology and applications [Invited]. Biomed Opt Express. 2017 Feb 21;8(3):1607-1637. doi: 10.1364/BOE.8.001607. eCollection 2017 Mar 1.

Reference Type BACKGROUND
PMID: 28663853 (View on PubMed)

Bhullar PK, Carrasco-Zevallos OM, Dandridge A, Pasricha ND, Keller B, Shen L, Izatt JA, Toth CA, Kuo AN. Intraocular Pressure and Big Bubble Diameter in Deep Anterior Lamellar Keratoplasty: An Ex-Vivo Microscope-Integrated OCT With Heads-Up Display Study. Asia Pac J Ophthalmol (Phila). 2017 Sep-Oct;6(5):412-417. doi: 10.22608/APO.2017265.

Reference Type BACKGROUND
PMID: 28930381 (View on PubMed)

Qian R, Carrasco-Zevallos OM, Mangalesh S, Sarin N, Vajzovic L, Farsiu S, Izatt JA, Toth CA. Characterization of Long Working Distance Optical Coherence Tomography for Imaging of Pediatric Retinal Pathology. Transl Vis Sci Technol. 2017 Oct 16;6(5):12. doi: 10.1167/tvst.6.5.12. eCollection 2017 Oct.

Reference Type BACKGROUND
PMID: 29057163 (View on PubMed)

Gabr H, Chen X, Zevallos-Carrasco OM, Viehland C, Dandrige A, Sarin N, Mahmoud TH, Vajzovic L, Izatt JA, Toth CA. VISUALIZATION FROM INTRAOPERATIVE SWEPT-SOURCE MICROSCOPE-INTEGRATED OPTICAL COHERENCE TOMOGRAPHY IN VITRECTOMY FOR COMPLICATIONS OF PROLIFERATIVE DIABETIC RETINOPATHY. Retina. 2018 Sep;38 Suppl 1(Suppl 1):S110-S120. doi: 10.1097/IAE.0000000000002021.

Reference Type BACKGROUND
PMID: 29324591 (View on PubMed)

Hsu ST, Gabr H, Viehland C, Sleiman K, Ngo HT, Carrasco-Zevallos OM, Vajzovic L, McNabb RP, Stinnett SS, Izatt JA, Kuo AN, Toth CA. Volumetric Measurement of Subretinal Blebs Using Microscope-Integrated Optical Coherence Tomography. Transl Vis Sci Technol. 2018 Apr 5;7(2):19. doi: 10.1167/tvst.7.2.19. eCollection 2018 Apr.

Reference Type BACKGROUND
PMID: 29651361 (View on PubMed)

Bleicher ID, Jackson-Atogi M, Viehland C, Gabr H, Izatt JA, Toth CA. Depth-Based, Motion-Stabilized Colorization of Microscope-Integrated Optical Coherence Tomography Volumes for Microscope-Independent Microsurgery. Transl Vis Sci Technol. 2018 Nov 1;7(6):1. doi: 10.1167/tvst.7.6.1. eCollection 2018 Nov.

Reference Type BACKGROUND
PMID: 30405965 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

R01EY023039

Identifier Type: NIH

Identifier Source: secondary_id

View Link

Pro00016827

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Retinal Investigation Using Optos OCT Device
NCT06846151 NOT_YET_RECRUITING NA
OCT in Fuchs' Dystrophy
NCT04258787 RECRUITING
Evaluation of OCT Measurements
NCT01806402 COMPLETED
Robotic OCT for ER Anterior Eye Exams
NCT06566339 NOT_YET_RECRUITING NA
Peripheral Retina Robotically Aligned OCT Study
NCT06451068 NOT_YET_RECRUITING NA