CF And Effects of Drugs Mixed Ex Vivo With Sputum for Mucolytic Treatment

NCT ID: NCT01533636

Last Updated: 2023-02-10

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Total Enrollment

50 participants

Study Classification

OBSERVATIONAL

Study Start Date

2012-07-31

Study Completion Date

2024-04-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The investigators will collect samples of sputum from healthy volunteers and patients with cystic fibrosis for the purpose of: a) purifying airway mucins for plate-based binding studies and; b) assessment of the effects of carbohydrates on the rheologic properties of the sputum.

This study has two hypotheses:

1. Lectins from Pseudomonas aeruginosa and Aspergillus fumigatus bind to airway mucins in a fucose-dependent manner, and this binding can be inhibited by fucosyl glycomimetic compounds.
2. Fucosyl glycomimetics will compete with Pseudomonas aeruginosa lectin (PA-IIL) and Aspergillus fumigatus lectin (AFL) and disrupt lectin-driven mucin cross-linking in CF sputum.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Pseudomonas lung infection is a major cause of morbidity and mortality occurring in multiple clinical settings. Patients with cystic fibrosis have lung colonization with Pseudomonas from an early age, and overwhelming pseudomonal lung infection is the most common cause of death in these patients. In addition, Pseudomonas pneumonia is common in immunocompromised patients and in patients intubated for management of respiratory failure. Particularly worrisome is the increasing frequency of P. aeruginosa isolates that are resistant to all or most currently available antibiotics. The mechanism of virulence of P. aeruginosa includes soluble lectins that recognize host oligosaccharides on mucins and the cell glycocalyx. P. aeruginosa has two soluble lectins - LecA, also known as PA-IL and LecB, also known as PA-IIL. PA-IL binds galactose and PA-IIL binds fucose. Notably, PA-IIL binds the fucose containing Lewis a oligosaccharide with very high affinity and the role of PA-IIL in biofilm formation is shown by the absence of biofilm formation in Pseudomonas mutants lacking PA-IIL and by the efficacy of multivalent fucosyl-peptide dendrimers in preventing and disrupting Pseudomonas biofilm formation. D-galactose and L-fucose have been successfully used to treat P. aeruginosa infection in a case report, which hints at the potential for glycomimetic therapy in CF. These monosaccharides are weak inhibitors of PA-IIL, however, and multivalent glycomimetics will be needed for more effective inhibition.

Aspergillus fumigatusinfection is responsible for the majority of human and animal aspergillosis disease, even though air sampling studies show that its conidia usually comprise only a small percentage of total airborne fungal challenge. It is both a primary and opportunistic pathogen, and it is particularly troublesome for patients with cystic fibrosis. It causes multiple lung diseases, includingchronic pulmonary aspergillosis, allergic bronchopulmonary aspergillosis, and invasive pulmonary aspergillosis. Aspergillomas also occur in patients with cavitary lung diseases. Together, these diseases cause significant morbidity and mortality, and available treatments are suboptimal. Most patients with chronic pulmonary aspergillosis require antifungal therapy for many months or years, many experience significant drug side effects, and some experience drug resistance. Patients with either allergic bronchopulmonary aspergillosis (ABPA) or severe asthma with fungal sensitization can improve with itraconazole treatment, but relapses are common, and itraconazole affects corticosteroid metabolism and has the potential to worsen steroid side effects. ABPA requires long-term treatment because Aspergillus airway colonization is difficult to eradicate and quickly recurs when treatment is stopped. Immunocompromised patients are especially vulnerable to invasive aspergillosis where the mortality rate is often 50%, even with antifungal treatment. Clearly, therefore, new treatment approaches are needed for lung diseases caused by A. fumigatus, and we are proposing an approach based on prevention of binding to airway mucins. Adherence of A. fumigatus conidia to host tissues has been the subject of extensive research, but little attention has been directed to Aspergillus/mucin interactions, a surprising deficiency given the role mucins play in airway biology.

This study is an ex-vivo study in which we will collect samples of sputum from healthy volunteers and patients with cystic fibrosis for the purpose of: a) purifying airway mucins for plate-based binding studies and; b) ex-vivo assessment of the effects of carbohydrates on the rheologic properties of the sputum.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Cystic Fibrosis

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

CASE_CONTROL

Study Time Perspective

CROSS_SECTIONAL

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Healthy Control

This group will be comprised of healthy individuals without evidence of lung disease.

No interventions assigned to this group

Cystic Fibrosis

This group will be comprised of individuals who have been diagnosed with cystic fibrosis.

No interventions assigned to this group

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Healthy control subjects:

* Age 18-65
* No history of lung disease
* Cystic fibrosis subjects:

* Age 18-65
* No history of lung disease other than cystic fibrosis
* Diagnosis of CF if sweat chloride values \> 60 mM on two separate pilocarpine iontophoresis sweat tests and/or two allelic CF-producing mutations in genetic analysis

Exclusion Criteria

* Use of recreational drugs within 30 days prior to enrollment
* Use of tobacco within 30 days prior to enrollment, or \> 10 pack-year tobacco history
* Pregnant or lactating females
Minimum Eligible Age

18 Years

Maximum Eligible Age

65 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of California, San Francisco

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

John V Fahy, MD

Role: PRINCIPAL_INVESTIGATOR

University of California, San Francisco

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University of California, San Francisco

San Francisco, California, United States

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

United States

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Xavier Orain, BS

Role: CONTACT

415-502-3472

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Ariana Baum, BA

Role: primary

415-514-1539

Related Links

Access external resources that provide additional context or updates about the study.

http://acrc.ucsf.edu

Airway Clinical Research Center website

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

10-04834

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

First Study of Oral Cysteamine in Cystic Fibrosis
NCT02212431 COMPLETED PHASE1/PHASE2
Airway Microbiome of Cystic Fibrosis Patients
NCT06057558 ACTIVE_NOT_RECRUITING NA