Mechanisms of Insulin Resistance in Critical Illness: Role of Systemic Inflammation and GLP-1
NCT ID: NCT01347801
Last Updated: 2014-09-22
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
40 participants
INTERVENTIONAL
2011-03-31
2014-09-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
The Acute Effects of Low-dose TNF-α on Glucose Metabolism and β-cell Function in Humans
NCT01953393
The Effect of GLP-1 on the Inhibition of Glucagon Secretion
NCT01507597
Incretin Hormones in Type-1 Diabetes Mellitus Glycemic Response in Type-1 Diabetes Mellitus
NCT00832741
Is Insulin Resistance and/or Glucose Intolerance Pathogenetic in the Development of a Reduced Incretin Effect
NCT00784745
Hyperglycemia and the Extra-pancreatic Effect of Incretins
NCT01749163
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The degree of hyperglycaemia correlates with mortality in ICU patients. van den Berghe et al. found that IV infusion of insulin to obtain strict normoglycaemia reduced mortality as well as morbidity in critically ill surgical patients and in some medical ICU patients.
However, insulin increases the risk of hypoglycaemia; this is a major obstacle to strict euglycaemia in ICU patients and may explain the inability of others to reproduce the benefits reported by van den Berghe et al. Thus, alternatives to insulin for controlling plasma glucose (PG) in ICU patients are warranted.
Aim:
To study the role of the incretin hormone, glucagon-like peptide (GLP)-1 for glycaemic, metabolic, hormonal and inflammatory profile in
* critically ill patients in the intensive care unit (ICU) and
* healthy volunteers exposed to a standardised systemic inflammation
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
CROSSOVER
BASIC_SCIENCE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
2C - 1
TNF and OGTT and saline
Placebo (Saline)
Normal saline (NaCl 0,9%)
TNF-alfa
1000ng/m2 BSA/hour i.v. infusion for 4-6 hours
OGTT
Oral glucose tolerance test with 75 g glucose
2C - 2
TNF and OGTT and GLP-1
GLP-1
GLP-1 1,2pmol/kg/min i.v. infusion for 4 hours
TNF-alfa
1000ng/m2 BSA/hour i.v. infusion for 4-6 hours
OGTT
Oral glucose tolerance test with 75 g glucose
2C - 3
TNF and IVGTT and saline
Placebo (Saline)
Normal saline (NaCl 0,9%)
TNF-alfa
1000ng/m2 BSA/hour i.v. infusion for 4-6 hours
IVGTT
Intravenous glucose tolerance test with infusion of 20% glucose matching the glucose profile of the corresponding OGTT
2C - 4
TNF and IVGTT and GLP-1
GLP-1
GLP-1 1,2pmol/kg/min i.v. infusion for 4 hours
TNF-alfa
1000ng/m2 BSA/hour i.v. infusion for 4-6 hours
IVGTT
Intravenous glucose tolerance test with infusion of 20% glucose matching the glucose profile of the corresponding OGTT
2A-1
Saline infusion and OGTT
Placebo (Saline)
Normal saline (NaCl 0,9%)
OGTT
Oral glucose tolerance test with 75 g glucose
2A-2
Saline and IVGTT
Placebo (Saline)
Normal saline (NaCl 0,9%)
IVGTT
Intravenous glucose tolerance test with infusion of 20% glucose matching the glucose profile of the corresponding OGTT
2A-3
TNF and OGTT
TNF-alfa
1000ng/m2 BSA/hour i.v. infusion for 4-6 hours
OGTT
Oral glucose tolerance test with 75 g glucose
2A-4
TNF and IVGTT
TNF-alfa
1000ng/m2 BSA/hour i.v. infusion for 4-6 hours
IVGTT
Intravenous glucose tolerance test with infusion of 20% glucose matching the glucose profile of the corresponding OGTT
1C
OGTT and corresponding IVGTT
OGTT
Oral glucose tolerance test with 75 g glucose
IVGTT
Intravenous glucose tolerance test with infusion of 20% glucose matching the glucose profile of the corresponding OGTT
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
GLP-1
GLP-1 1,2pmol/kg/min i.v. infusion for 4 hours
Placebo (Saline)
Normal saline (NaCl 0,9%)
TNF-alfa
1000ng/m2 BSA/hour i.v. infusion for 4-6 hours
OGTT
Oral glucose tolerance test with 75 g glucose
IVGTT
Intravenous glucose tolerance test with infusion of 20% glucose matching the glucose profile of the corresponding OGTT
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age 18-40years
* BMI \< 30kg/m2
* Age\>18 years
* HbA1C\<6,5%
* Admission to the ICU within the last 72 hours
Exclusion Criteria
* presence of any inflammatory illness during the fortnight preceding the study
18 Years
40 Years
MALE
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Copenhagen
OTHER
Novo Nordisk A/S
INDUSTRY
Rigshospitalet, Denmark
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Kirsten Moller
MD, PH.D, DMSc
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Kirsten Møller, MD, Ph.D., DMSc
Role: PRINCIPAL_INVESTIGATOR
Centre of Inflammation and Metabolism
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Centre of Inflammation and Metabolism - Rigshospitalet 7641
Copenhagen, , Denmark
University of Copenhagen
Copenhagen, , Denmark
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia. Crit Care Clin. 2001 Jan;17(1):107-24. doi: 10.1016/s0749-0704(05)70154-8.
Mizock BA. Alterations in fuel metabolism in critical illness: hyperglycaemia. Best Pract Res Clin Endocrinol Metab. 2001 Dec;15(4):533-51. doi: 10.1053/beem.2001.0168.
Rusavy Z, Sramek V, Lacigova S, Novak I, Tesinsky P, Macdonald IA. Influence of insulin on glucose metabolism and energy expenditure in septic patients. Crit Care. 2004 Aug;8(4):R213-20. doi: 10.1186/cc2868. Epub 2004 May 26.
Beal AL, Cerra FB. Multiple organ failure syndrome in the 1990s. Systemic inflammatory response and organ dysfunction. JAMA. 1994 Jan 19;271(3):226-33.
Schmidt MI, Duncan BB, Sharrett AR, Lindberg G, Savage PJ, Offenbacher S, Azambuja MI, Tracy RP, Heiss G. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet. 1999 May 15;353(9165):1649-52. doi: 10.1016/s0140-6736(99)01046-6.
Wolfe RR, Martini WZ. Changes in intermediary metabolism in severe surgical illness. World J Surg. 2000 Jun;24(6):639-47. doi: 10.1007/s002689910105.
Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest. 2002 Jun;32 Suppl 3:14-23. doi: 10.1046/j.1365-2362.32.s3.3.x.
Thijs LG, Hack CE. Time course of cytokine levels in sepsis. Intensive Care Med. 1995 Nov;21 Suppl 2:S258-63. doi: 10.1007/BF01740764.
Krogh-Madsen R, Plomgaard P, Moller K, Mittendorfer B, Pedersen BK. Influence of TNF-alpha and IL-6 infusions on insulin sensitivity and expression of IL-18 in humans. Am J Physiol Endocrinol Metab. 2006 Jul;291(1):E108-14. doi: 10.1152/ajpendo.00471.2005. Epub 2006 Feb 7.
Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. 1996 Jun 15;97(12):2859-65. doi: 10.1172/JCI118742.
Voerman BJ, Strack van Schijndel RJ, Groeneveld AB, de Boer H, Nauta JP, Thijs LG. Effects of human growth hormone in critically ill nonseptic patients: results from a prospective, randomized, placebo-controlled trial. Crit Care Med. 1995 Apr;23(4):665-73. doi: 10.1097/00003246-199504000-00014.
Finney SJ, Zekveld C, Elia A, Evans TW. Glucose control and mortality in critically ill patients. JAMA. 2003 Oct 15;290(15):2041-7. doi: 10.1001/jama.290.15.2041.
van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001 Nov 8;345(19):1359-67. doi: 10.1056/NEJMoa011300.
Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Wijngaerden E, Bobbaers H, Bouillon R. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006 Feb 2;354(5):449-61. doi: 10.1056/NEJMoa052521.
Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Olthoff D, Jaschinski U, John S, Rossaint R, Welte T, Schaefer M, Kern P, Kuhnt E, Kiehntopf M, Hartog C, Natanson C, Loeffler M, Reinhart K; German Competence Network Sepsis (SepNet). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008 Jan 10;358(2):125-39. doi: 10.1056/NEJMoa070716.
Cryer PE. Hypoglycaemia: the limiting factor in the glycaemic management of the critically ill? Diabetologia. 2006 Aug;49(8):1722-5. doi: 10.1007/s00125-006-0306-4. No abstract available.
NICE-SUGAR Study Investigators; Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, Hebert PC, Heritier S, Heyland DK, McArthur C, McDonald E, Mitchell I, Myburgh JA, Norton R, Potter J, Robinson BG, Ronco JJ. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009 Mar 26;360(13):1283-97. doi: 10.1056/NEJMoa0810625. Epub 2009 Mar 24.
Holst JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab. 2004 Aug;287(2):E199-206. doi: 10.1152/ajpendo.00545.2003.
Kolligs F, Fehmann HC, Goke R, Goke B. Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9-39) amide. Diabetes. 1995 Jan;44(1):16-9. doi: 10.2337/diab.44.1.16.
Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007 Oct;87(4):1409-39. doi: 10.1152/physrev.00034.2006.
Orskov C, Holst JJ, Nielsen OV. Effect of truncated glucagon-like peptide-1 [proglucagon-(78-107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology. 1988 Oct;123(4):2009-13. doi: 10.1210/endo-123-4-2009.
Creutzfeldt WO, Kleine N, Willms B, Orskov C, Holst JJ, Nauck MA. Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients. Diabetes Care. 1996 Jun;19(6):580-6. doi: 10.2337/diacare.19.6.580.
Willms B, Idowu K, Holst JJ, Creutzfeldt W, Nauck MA. Overnight GLP-1 normalizes fasting but not daytime plasma glucose levels in NIDDM patients. Exp Clin Endocrinol Diabetes. 1998;106(2):103-7. doi: 10.1055/s-0029-1211959.
Nauck M, Stockmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia. 1986 Jan;29(1):46-52. doi: 10.1007/BF02427280.
Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993 Jan;91(1):301-7. doi: 10.1172/JCI116186.
Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001 Mar;50(3):609-13. doi: 10.2337/diabetes.50.3.609.
Vilsboll T, Toft-Nielsen MB, Krarup T, Madsbad S, Dinesen B, Holst JJ. Evaluation of beta-cell secretory capacity using glucagon-like peptide 1. Diabetes Care. 2000 Jun;23(6):807-12. doi: 10.2337/diacare.23.6.807.
Knop FK, Vilsboll T, Larsen S, Madsbad S, Holst JJ, Krarup T. No hypoglycemia after subcutaneous administration of glucagon-like peptide-1 in lean type 2 diabetic patients and in patients with diabetes secondary to chronic pancreatitis. Diabetes Care. 2003 Sep;26(9):2581-7. doi: 10.2337/diacare.26.9.2581.
Meier JJ, Weyhe D, Michaely M, Senkal M, Zumtobel V, Nauck MA, Holst JJ, Schmidt WE, Gallwitz B. Intravenous glucagon-like peptide 1 normalizes blood glucose after major surgery in patients with type 2 diabetes. Crit Care Med. 2004 Mar;32(3):848-51. doi: 10.1097/01.ccm.0000114811.60629.b5.
Sokos GG, Bolukoglu H, German J, Hentosz T, Magovern GJ Jr, Maher TD, Dean DA, Bailey SH, Marrone G, Benckart DH, Elahi D, Shannon RP. Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am J Cardiol. 2007 Sep 1;100(5):824-9. doi: 10.1016/j.amjcard.2007.05.022. Epub 2007 Jun 14.
Deane AM, Summers MJ, Zaknic AV, Chapman MJ, Fraser RJ, Di Bartolomeo AE, Wishart JM, Horowitz M. Exogenous glucagon-like peptide-1 attenuates the glycaemic response to postpyloric nutrient infusion in critically ill patients with type-2 diabetes. Crit Care. 2011;15(1):R35. doi: 10.1186/cc9983. Epub 2011 Jan 21.
Deane AM, Chapman MJ, Fraser RJ, Summers MJ, Zaknic AV, Storey JP, Jones KL, Rayner CK, Horowitz M. Effects of exogenous glucagon-like peptide-1 on gastric emptying and glucose absorption in the critically ill: relationship to glycemia. Crit Care Med. 2010 May;38(5):1261-9. doi: 10.1097/CCM.0b013e3181d9d87a.
Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992 Jun;101(6):1644-55. doi: 10.1378/chest.101.6.1644.
Rosenvinge A, Krogh-Madsen R, Baslund B, Pedersen BK. Insulin resistance in patients with rheumatoid arthritis: effect of anti-TNFalpha therapy. Scand J Rheumatol. 2007 Mar-Apr;36(2):91-6. doi: 10.1080/03009740601179605.
Nielsen ST, Janum S, Krogh-Madsen R, Solomon TP, Moller K. The incretin effect in critically ill patients: a case-control study. Crit Care. 2015 Nov 16;19:402. doi: 10.1186/s13054-015-1118-z.
Lehrskov-Schmidt L, Lehrskov-Schmidt L, Nielsen ST, Holst JJ, Moller K, Solomon TP. The effects of TNF-alpha on GLP-1-stimulated plasma glucose kinetics. J Clin Endocrinol Metab. 2015 Apr;100(4):E616-22. doi: 10.1210/jc.2014-4244. Epub 2015 Feb 12.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
HS:H-3-2009-108
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.