Left Atrial Distensibility to Predict Prognosis in Consecutive Patients
NCT ID: NCT01171040
Last Updated: 2011-03-08
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
2000 participants
OBSERVATIONAL
2009-07-31
2012-07-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Left Atrial Distensibility to Predict Left Ventricular Filling Pressure and Prognosis in Patients With Severe Mitral Regurgitation
NCT01172184
Left Atrial Distensibility and Left Ventricular Filling Pressure in Acute Myocardial Infarction
NCT01168609
Evaluation of Left Ventricular Volumes by Real-Time 3-Dimensional Echocardiography
NCT00001740
Evaluation of Blood Flow Patterns in Lung Blood Vessels Using Ultrasound Technique in Patients With Congestive Heart Failure
NCT01744210
Assessment of Left Ventricular Diastolic Function in Patients With Atrial Fibrillation
NCT04654806
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Purpose Left atrial size, particularly left atrial volume, has been recognized as a marker of left ventricular diastolic dysfunction. Contrary to flow and tissue Doppler parameters, left atrial volume is independent of acute volume load and therefore may provide a more accurate assessment of acute and chronic left ventricular dysfunction. In addition, the measurement of left atrial volume is lack of some handicaps of tissue Doppler, including regional myocardial dysfunction in coronary artery disease and bundle branch block. In recent studies, end-systolic left atrial volume (maximal left atrial volume) was useful to predict the risk of atrial fibrillation after cardiac surgery. The short-term and long-term prognosis of acute myocardial infarction was also associated with left atrial volume. In patients with mitral regurgitation, it could be used to reliably estimate the regurgitant volume. Despite end-systolic left atrial volume provides prognostic significance in many disease entities, left atrium is filling and empty in dynamic cyclic motion, so we speculate that left atrial distensibility, defined as the percentage change of left atrial volume between end-systolic and end-diastolic phase, has more prognostic power to represent LVFP and to predict the prognosis. Based on the phenomenon of that higher LVFP, which will conduct to and stretch left atrium in diastolic phase, induces left atrial distension and makes the reduction of distensibility between end-systolic and end-diastolic phases, we had proved the logarithmic relationship between left atrial distensibility and LVFP.
Materials and Methods
Subjects:
2000 consecutive patients received echocardiographic examinations will be enrolled. The exclusion criteria are including (1) patients with prosthetic mitral valves or mitral stenosis, (2) rhythm other than sinus rhythm, (3) age more than 18 years-old, (4) inadequate image quality, (5) lack of informed consent.
Traditional echocardiographic measurement and myocardial tissue Doppler:
All studies are performed by experienced sonographers and reviewed by staff cardiologists with advanced training in echocardiography. Left ventricular function is assessed by Simpson's method. Mitral regurgitation is graded with color flow imaging. Mitral inflow is assessed with pulsed wave Doppler echocardiography form the apical 4-chamber view. The Doppler bean is aligned parallel to the direction of flow, and a 1- to 2-mm sample volume is placed between the tips of mitral leaflets during diastole. From the mitral inflow profile, the E- and A-wave velocity, E-deceleration time, and E/A velocity ration are measured. Pulmonary venous flow is recorded with pulsed-wave Doppler with a sample volume placed 1 cm into the right upper pulmonary vein. The flow velocities are recorded, and the ratio of systolic to diastolic forward flow (S/D ratio) is calculated. Doppler tissue imaging of mitral annulus over septal, lateral and inferior borders is also obtained from apical views. Diastolic filling is categorized as normal (grade 0), impaired relaxation (grade 1), pseudonormalization (grade 2), and restrictive (grade 3) by a combination of transmitral and pulmonary flow patterns as validated previously.
Left atrial volume measurement:
Left atrial volume is assessed by the biplane area-length method from apical 4- and 2-chamber views. The volumes are measured at end-systolic (just before mitral valve opening or the largest dimension), pre-atrial contraction (just before P wave), and end-diastolic (the smallest dimension or the onset of QRS complex), using the highest frame rate. The left atrial outlines at those three phases retrace off-line for three consecutive beats, then average. The recesses of the pulmonary veins and the left atrial appendage are excluded. The length of left atrium is that of the perpendicular line measured from the middle of the plane of the mitral annulus to the superior aspect of the left atrium. The left atrial volume is calculated as: 0.85 x 4-chamber area x 2-chamber area ÷ the shorter of the two lengths. The volume is indexed for body surface area. Left atrial distensibility is defined as: (end-systole left atrial volume - end-diastole left atrial volume) ÷ end-systole left atrial volume. Left atrial ejection fraction is calculated as: (pre-atrial contraction volume - end-diastole left atrial volume) ÷ pre-atrial contraction volume.
Follow-up:
Clinical outcomes are determined 1-year after indexed examination. Follow-up included assessment for the occurrence of sudden death, heart failure with hospitalization, atrial fibrillation, stroke, and death (both cardiac and non-cardiac) per 3 months by telephone interview.
Interobserver variability:
In all cases, atrial volume is measured by two observers independently. Interobserver variability is calculated as the difference between the values obtained by the tow observers divided by the mean.
Statistical analysis:
SPSS software is used for statistical analysis. All continuous variables are presented as mean ± standard deviation. Comparison of clinical and echocardiographic characteristics is performed by chi-square analysis for categorical variables and by Student t test for echocardiography and other continuous variables. A p value \< 0.05 is considered significant. Patients will be subdivided to four quartiles according to left atrial distensibility. Unadjusted survival curves are produced using the Kaplan-Meier method. The log-rank test is used to compare survival curves. Adjusted survival curves are constructed using variables entered into the Cox model set to their mean values in the total population. The hazard ratio of low left atrial distensibility will be assessed by comparing quartile to quartile.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Consecutive patients received echocardiographic examinations
Consecutive patients received echocardiography are willing to participate in this study.
Echocardiography, including the measurements of left atrial (LA) distensibility
The LA volumes were measured at three points: 1) immediately before the mitral valve opening (maximal LV volume or Volmax); 2) at onset of the P-wave on electrocardiography (pre-atrial contraction volume or Volp); and 3) at mitral valve closure (minimal LV volume or Volmin). The LA distensibility was calculated as (Volmax - Volmin)x 100% / Volmin. The LA ejection fraction was calculated as (Volp - Volmin)x 100% / Volp. In all patients, LA volumes were indexed to body surface area (BSA).
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Echocardiography, including the measurements of left atrial (LA) distensibility
The LA volumes were measured at three points: 1) immediately before the mitral valve opening (maximal LV volume or Volmax); 2) at onset of the P-wave on electrocardiography (pre-atrial contraction volume or Volp); and 3) at mitral valve closure (minimal LV volume or Volmin). The LA distensibility was calculated as (Volmax - Volmin)x 100% / Volmin. The LA ejection fraction was calculated as (Volp - Volmin)x 100% / Volp. In all patients, LA volumes were indexed to body surface area (BSA).
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* (2) rhythm other than sinus rhythm
* (3) age less than 18 years-old
* (4) inadequate image quality
* (5) lack of informed consent
18 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Kaohsiung Veterans General Hospital.
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Kaohsiung Veterans General Hospital
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Shih-Hung Hsiao, MD
Role: PRINCIPAL_INVESTIGATOR
Cardiovascular Center, Department of Internal Medicine, Kaohsiung Veterans General Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Kaohsiung Veterans General Hospital
Kaohsiung, Taiwan, Taiwan
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Kasner M, Westermann D, Steendijk P, Gaub R, Wilkenshoff U, Weitmann K, Hoffmann W, Poller W, Schultheiss HP, Pauschinger M, Tschope C. Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation. 2007 Aug 7;116(6):637-47. doi: 10.1161/CIRCULATIONAHA.106.661983. Epub 2007 Jul 23.
Agricola E, Galderisi M, Oppizzi M, Melisurgo G, Airoldi F, Margonato A. Doppler tissue imaging: a reliable method for estimation of left ventricular filling pressure in patients with mitral regurgitation. Am Heart J. 2005 Sep;150(3):610-5. doi: 10.1016/j.ahj.2004.10.046.
Appleton CP, Galloway JM, Gonzalez MS, Gaballa M, Basnight MA. Estimation of left ventricular filling pressures using two-dimensional and Doppler echocardiography in adult patients with cardiac disease. Additional value of analyzing left atrial size, left atrial ejection fraction and the difference in duration of pulmonary venous and mitral flow velocity at atrial contraction. J Am Coll Cardiol. 1993 Dec;22(7):1972-82. doi: 10.1016/0735-1097(93)90787-2.
Rossi A, Cicoira M, Zanolla L, Sandrini R, Golia G, Zardini P, Enriquez-Sarano M. Determinants and prognostic value of left atrial volume in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2002 Oct 16;40(8):1425. doi: 10.1016/s0735-1097(02)02305-7.
Simek CL, Feldman MD, Haber HL, Wu CC, Jayaweera AR, Kaul S. Relationship between left ventricular wall thickness and left atrial size: comparison with other measures of diastolic function. J Am Soc Echocardiogr. 1995 Jan-Feb;8(1):37-47. doi: 10.1016/s0894-7317(05)80356-6.
Moller JE, Hillis GS, Oh JK, Seward JB, Reeder GS, Wright RS, Park SW, Bailey KR, Pellikka PA. Left atrial volume: a powerful predictor of survival after acute myocardial infarction. Circulation. 2003 May 6;107(17):2207-12. doi: 10.1161/01.CIR.0000066318.21784.43. Epub 2003 Apr 14.
Beinart R, Boyko V, Schwammenthal E, Kuperstein R, Sagie A, Hod H, Matetzky S, Behar S, Eldar M, Feinberg MS. Long-term prognostic significance of left atrial volume in acute myocardial infarction. J Am Coll Cardiol. 2004 Jul 21;44(2):327-34. doi: 10.1016/j.jacc.2004.03.062.
Hsiao SH, Huang WC, Lin KL, Chiou KR, Kuo FY, Lin SK, Cheng CC. Left atrial distensibility and left ventricular filling pressure in acute versus chronic severe mitral regurgitation. Am J Cardiol. 2010 Mar 1;105(5):709-15. doi: 10.1016/j.amjcard.2009.10.052.
Hsiao SH, Chiou KR. Renal function decline predicted by left atrial expansion index in non-diabetic cohort with preserved systolic heart function. Eur Heart J Cardiovasc Imaging. 2017 May 1;18(5):521-528. doi: 10.1093/ehjci/jew224.
Hsiao SH, Chiou KR. Left atrial expansion index predicts atrial fibrillation in dyspnea. Circ J. 2013;77(11):2712-21. doi: 10.1253/circj.cj-13-0463. Epub 2013 Jul 26.
Hsiao SH, Chiou KR. Left atrial expansion index predicts all-cause mortality and heart failure admissions in dyspnoea. Eur J Heart Fail. 2013 Nov;15(11):1245-52. doi: 10.1093/eurjhf/hft087. Epub 2013 May 22.
Related Links
Access external resources that provide additional context or updates about the study.
Government Research Bulletin
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
VGHKS99-015
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.