Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
TERMINATED
PHASE3
609 participants
INTERVENTIONAL
2008-03-31
2015-05-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Study in PRE-manifest Huntington's Disease of Coenzyme Q10 (UbiquinonE) Leading to Preventive Trials (PREQUEL)
NCT00920699
Bioavailability of Ubiquinol in Huntington Disease
NCT00980694
Parkinson's Disease Treatment With Coenzyme Q10
NCT00004731
Coenzyme Q10 as a Symptomatic Treatment in Parkinson's Disease
NCT00180037
Effects of Coenzyme Q10 (CoQ) in Parkinson Disease
NCT00740714
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The purpose of this trial is to find out if coenzyme Q10 (CoQ) is effective in slowing the worsening symptoms of HD. In this study, researchers also will learn about the safety and acceptability of long-term CoQ use by determining its effects on people with HD.
Participants in this trial will be randomly chosen to one of two groups. Group 1 will receive CoQ (2400 mg/day), and group 2 will receive a placebo (an inactive substance). Researchers will compare the change in total functional capacity (TFC)-a measure of functional disability-in the two groups. The TFC is a valid and reliable measure of disease progression and is particularly responsive to change in the early and mid-stages of HD. Researchers will also compare the changes in other components of the Unified Huntington's Disease Rating Scale '99 (UHDRS) including: the total motor score, total behavioral frequency score, total behavior frequency X severity score, verbal fluency test, symbol digit modalities test, Stroop, interference test, functional checklist, and independence scale scores. The groups will also be compared with respect to tolerability, adverse events, vital signs, and laboratory test results as measures of safety.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
TRIPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
A - coenzyme Q10 2400 mg/day
Randomized to active treatment (coenzyme Q10 2400 mg/day)
coenzyme Q10
4 - 300 mg CoQ chewable wafers taken orally twice a day
B - Placebo
Randomized to placebo
placebo
an inactive substance
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
coenzyme Q10
4 - 300 mg CoQ chewable wafers taken orally twice a day
placebo
an inactive substance
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Subjects must have clinical features of HD and a confirmed family history of HD, OR a CAG repeat expansion ≥ 36.
* TFC \> 9.
* Must be ambulatory and not require skilled nursing care.
* Age ≥ 16 years.
* Women must not be able to become pregnant (e.g., post menopausal, surgically sterile or using adequate birth control methods for the duration of the study).
* If psychotropic medications are taken (e.g., anxiolytics, hypnotics, benzodiazepines, antidepressants), they must be at a stable dosage for four weeks prior to randomization and should be maintained at a constant dosage throughout the study, as possible. (Note: stable dosing of tetrabenazine is allowable.) Any changes to these medications mandated by clinical conditions will be systematically recorded and the subject will be permitted to remain in the trial.
* Able to give informed consent and comply with trial procedures
* Able to take oral medication.
* May be required to identify an informant or caregiver who will be willing and able to supervise the daily dosing of study medications and to maintain control of study medications in the home.
* A designated individual will be identified by the subject to participate in the ongoing consent process should the subject's cognitive capacity to consent become compromised during participation in the study.
Exclusion Criteria
* Exposure to any investigational drug within 30 days of the Baseline visit.
* Clinical evidence of unstable medical illness in the investigator's judgment.
* Unstable psychiatric illness defined as psychosis (hallucinations or delusions), untreated major depression or suicidal ideation within 90 days of the Baseline visit.
* Substance (alcohol or drug) abuse within one year of the Baseline visit.
* Women who are pregnant or breastfeeding.
* Use of supplemental coenzyme Q10 within 30 days prior to the Baseline visit
* Clinically serious abnormalities in the screening laboratory studies (Screening creatinine greater than 2.0, alanine aminotransferase (ALT) or total bilirubin greater than 3 times the upper limit of normal, absolute neutrophil count of ≤1000/ul, platelet concentration of \<100,000/ul, hematocrit level of \<33 for female or \<35 for male, or coagulation tests \> 1.5 time upper limit of normal).
* Known allergy to FD\&C yellow #5 or any other ingredient in the study drug (active and placebo)
16 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Institute of Neurological Disorders and Stroke (NINDS)
NIH
University of Rochester
OTHER
Massachusetts General Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Merit E. Cudkowicz, MD
Julieanne Dorn Professor of Neurology
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Merit Cudkowicz, MD MSc
Role: PRINCIPAL_INVESTIGATOR
Massachusetts General Hospital
Michael McDermott, PhD
Role: PRINCIPAL_INVESTIGATOR
University of Rochester, Biostatistics
Karl Kieburtz, MD MPH
Role: PRINCIPAL_INVESTIGATOR
Director, Clinical Trials Coordination Center, University of Rochester
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Alabama At Birmingham, Pediatric Neurology Childrens, Harbor Bldg Suite 314, 1600 7Th Avenue South
Birmingham, Alabama, United States
Mayo Clinic Arizona, 13400 East Shea Boulevard, Csu-Cp21B
Scottsdale, Arizona, United States
WASHINGTON REGIONAL MEDICAL CENTER, 3215 N. North Hills Blvd
Fayetteville, Arkansas, United States
University of California Irvine, Department of Neurology, 100 Irvine Hall
Irvine, California, United States
University of California Davis, Medical Center Dept of Neurology, Acc Building Suite 3700, 4860 Y Street
Sacramento, California, United States
Colorado Neurological Institute, Movement Disorders Center, 701 East Hampden Avenue Suite 510
Littleton, Colorado, United States
University of Florida Center for Movement Disorders and Neurorestoration, 3450 Hull Road, 4th Floor
Gainesville, Florida, United States
UNIVERSITY OF MIAMI, 1150 NW 14th STREET, #401
Miami, Florida, United States
University of South Florida, College of Medicine Dept of Neurology, 12901 Bruce B Downs Blvd Mdc-55
Tampa, Florida, United States
Emory University, Wesley Woods Center, 1841 Clifton Road NE Room 314
Atlanta, Georgia, United States
Idaho Elks Rehabilitation Hospital, 600 North Robbins Road
Boise, Idaho, United States
Rush University Medical Center, Department of Neurological Sciences, 1725 West Harrison Suite 755
Chicago, Illinois, United States
Indiana University School of Medicine, Outpatient Clinical Research Facility, 535 Barnhill Drive Room #150
Indianapolis, Indiana, United States
University of Iowa Hospital and Clinics, 200 Hawkins Road, Room W263 General Hospital
Iowa City, Iowa, United States
University of Kansas Medical Center, Department of Neurology, 3599 Rainbow Blvd Mail Stop 2012
Kansas City, Kansas, United States
Hereditary Neurological Disease Centre (Hndc),3223 N. Webb, Suite 4
Wichita, Kansas, United States
University of Maryland School of Medicine, 22 South Greene Street, N4 W49-B
Baltimore, Maryland, United States
Johns Hopkins University, 600 North Wolfe Street, Meyer 2-181
Baltimore, Maryland, United States
Boston University School of Medicine, Department of Neurology, 715 Albany Street C329
Boston, Massachusetts, United States
Massachusetts General Hospital, 149 13Th Street Suite 2241
Charlestown, Massachusetts, United States
University of Michigan, 1500 E Medical Center Drive, B1 H202 Nuclear Medicine
Ann Arbor, Michigan, United States
Struthers Parkinson'S Center, 6701 Country Club Drive
Golden Valley, Minnesota, United States
Washington University School of Medicine, Box 8111, 660 South Euclid
St Louis, Missouri, United States
University of Las Vegas School of Medicine, 1707 W. Charleston Blvd, Suite 220
Las Vegas, Nevada, United States
Cooper University Hospital
Camden, New Jersey, United States
Nj Neuroscience Institute, Jfk Medical Center, 65 James Street
Edison, New Jersey, United States
Albany Medical College, Parkinson'S Disease & Movement Disorders Ctr
Albany, New York, United States
North Shore-Lij Health System, 350 Community Drive Room 110, Research Institute
Manhasset, New York, United States
Columbia University, Sergievsky Center P&S Box 16, 630 West 168Th Street
New York, New York, United States
University of Rochester, Department of Neurology, 919 Westfall Road Building C Suite 220
Rochester, New York, United States
Duke University, 932 Morreene Road #213
Durham, North Carolina, United States
Wake Forest University, Baptist Med Center, Department of Neurology, Medical Center Boulevard
Winston-Salem, North Carolina, United States
University of Cincinnati/Cincinnati Children'S Hospital, 222 Piedmont Avenue, Suite 3200
Cincinnati, Ohio, United States
OHIO STATE UNIVERSITY , 2006 Kenny Road
Columbus, Ohio, United States
ST. LUKE'S HOSPITAL, 240 Centronia Road
Allentown, Pennsylvania, United States
University of Pennsylvania, Pennsylvania Hospital Department of Neurology , 330 South 9Th Street
Philadelphia, Pennsylvania, United States
University of Pittsburgh Kaufmann Medical Building, 3471 Fifth Avunue, Suite 811
Pittsburgh, Pennsylvania, United States
BUTLER HOSPTIAL MOVEMENT DISORDER PROGRAM, 345 Blackstone Boulevard
Providence, Rhode Island, United States
The University of Tennesee Health Science Cen, 855 Monroe Avenue, Department of Neurology, Room 415 Link Bldg
Memphis, Tennessee, United States
UN oF TEXAS SOUTHWESTERN MED CENTER DALLAS, 5323 HARRY HINES BOULEVARD H1.108
Dallas, Texas, United States
Baylor College of Medicine, 6550 Fannin Suite 1801
Houston, Texas, United States
Westmead Hospital, Department of Neurology Level 1, Po Box 533
Wentworthville, New South Wales, Australia
University of Calgary, Heritage Medical Research Clinic, Trw Bldg 5 Floor, 3280 Hospital Dri. NW
Calgary, Alberta, Canada
University of Alberta, Glenrose Rehab Hosp, Movement Disorder Clinic , Rm 0601 Gleneast 10230 - 111 Avenue
Edmonton, Alberta, Canada
Department of Medical Genetics, Ubc Hospital, Room S179-2211 Westbrook Mall
Vancouver, British Columbia, Canada
London Health Sciences Centre, University Hospital, 339 Windermere Road
London, Ontario, Canada
Centre For Movement Disorders, 2780 Bur Oak Avenue
Markham, Ontario, Canada
NORTH YORK GENERAL HOSPITAL (2), 4001 Leslie Street
Toronto, Ontario, Canada
North York General Hospital, 4001 Leslie Street
Toronto, Ontario, Canada
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Kowall N, Ferrante R, Martin J. Patterns of cell loss in Huntington's disease. Trends in Neurosciences 1987;10:24-29.
Riley D, Lang A. Movement Disorders. In: Bradley W, Daroff R, Fenichel G, eds. Neurology in Clinical Practice. The Neurological Disorders. Boston: Butterworth-Heinemann, 1991: 1563-1601.
Adams P, Falek A, Arnold J. Huntington disease in Georgia: age at onset. Am J Hum Genet. 1988 Nov;43(5):695-704.
Conneally PM. Huntington disease: genetics and epidemiology. Am J Hum Genet. 1984 May;36(3):506-26.
Harper PS. The epidemiology of Huntington's disease. Hum Genet. 1992 Jun;89(4):365-76. doi: 10.1007/BF00194305.
Tanner CM, Goldman SM. Epidemiology of movement disorders. Curr Opin Neurol. 1994 Aug;7(4):340-5. doi: 10.1097/00019052-199408000-00011. No abstract available.
Young AB, Shoulson I, Penney JB, Starosta-Rubinstein S, Gomez F, Travers H, Ramos-Arroyo MA, Snodgrass SR, Bonilla E, Moreno H, et al. Huntington's disease in Venezuela: neurologic features and functional decline. Neurology. 1986 Feb;36(2):244-9. doi: 10.1212/wnl.36.2.244.
Bruyn G. Huntington's chorea: Historical clinical and laboratory synopsis. In: Vinken P, Bruyn G, eds. Handbook of Clinical Neurology. Amsterdam, 1968: 298-378.
Leigh RJ, Newman SA, Folstein SE, Lasker AG, Jensen BA. Abnormal ocular motor control in Huntington's disease. Neurology. 1983 Oct;33(10):1268-75. doi: 10.1212/wnl.33.10.1268.
Caine ED, Hunt RD, Weingartner H, Ebert MH. Huntington's dementia. Clinical and neuropsychological features. Arch Gen Psychiatry. 1978 Mar;35(3):377-84. doi: 10.1001/archpsyc.1978.01770270127013.
Bamford KA, Caine ED, Kido DK, Plassche WM, Shoulson I. Clinical-pathologic correlation in Huntington's disease: a neuropsychological and computed tomography study. Neurology. 1989 Jun;39(6):796-801. doi: 10.1212/wnl.39.6.796.
Sorensen SA, Fenger K. Causes of death in patients with Huntington's disease and in unaffected first degree relatives. J Med Genet. 1992 Dec;29(12):911-4. doi: 10.1136/jmg.29.12.911.
Oliver JE. Huntington's chorea in Northamptonshire. Br J Psychiatry. 1970 Mar;116(532):241-53. doi: 10.1192/bjp.116.532.241. No abstract available.
Greenamyre J, Shoulson I. Huntington's Disease. In: Calne D, ed. Neurodegenerative Diseases. Philadelphia: WB Saunders, 1994: 685-704.
Shoulson I, Fahn S. Huntington disease: clinical care and evaluation. Neurology. 1979 Jan;29(1):1-3. doi: 10.1212/wnl.29.1.1. No abstract available.
Feigin A, Kieburtz K, Bordwell K, Como P, Steinberg K, Sotack J, Zimmerman C, Hickey C, Orme C, Shoulson I. Functional decline in Huntington's disease. Mov Disord. 1995 Mar;10(2):211-4. doi: 10.1002/mds.870100213.
Myers RH, Sax DS, Koroshetz WJ, Mastromauro C, Cupples LA, Kiely DK, Pettengill FK, Bird ED. Factors associated with slow progression in Huntington's disease. Arch Neurol. 1991 Aug;48(8):800-4. doi: 10.1001/archneur.1991.00530200036015.
Penney JB Jr, Young AB, Shoulson I, Starosta-Rubenstein S, Snodgrass SR, Sanchez-Ramos J, Ramos-Arroyo M, Gomez F, Penchaszadeh G, Alvir J, et al. Huntington's disease in Venezuela: 7 years of follow-up on symptomatic and asymptomatic individuals. Mov Disord. 1990;5(2):93-9. doi: 10.1002/mds.870050202.
Young AB, Penney JB, Starosta-Rubinstein S, Markel DS, Berent S, Giordani B, Ehrenkaufer R, Jewett D, Hichwa R. PET scan investigations of Huntington's disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol. 1986 Sep;20(3):296-303. doi: 10.1002/ana.410200305.
Kido D, Shoulson I, Manzione J, Harnish P. Measurement of caudate nucleus and putamen atrophy in patients with Huntington's disease. Neuroradiology 1991;33:604-606.
Mazziotta JC. Huntington's disease: studies with structural imaging techniques and positron emission tomography. Semin Neurol. 1989 Dec;9(4):360-9. doi: 10.1055/s-2008-1041346. No abstract available.
Beal MF, Ferrante RJ. Experimental therapeutics in transgenic mouse models of Huntington's disease. Nat Rev Neurosci. 2004 May;5(5):373-84. doi: 10.1038/nrn1386. No abstract available.
A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell. 1993 Mar 26;72(6):971-83. doi: 10.1016/0092-8674(93)90585-e.
Tabrizi SJ, Workman J, Hart PE, Mangiarini L, Mahal A, Bates G, Cooper JM, Schapira AH. Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol. 2000 Jan;47(1):80-6. doi: 10.1002/1531-8249(200001)47:13.3.co;2-b.
Cha JH. Transcriptional dysregulation in Huntington's disease. Trends Neurosci. 2000 Sep;23(9):387-92. doi: 10.1016/s0166-2236(00)01609-x.
Ona VO, Li M, Vonsattel JP, Andrews LJ, Khan SQ, Chung WM, Frey AS, Menon AS, Li XJ, Stieg PE, Yuan J, Penney JB, Young AB, Cha JH, Friedlander RM. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature. 1999 May 20;399(6733):263-7. doi: 10.1038/20446.
Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel JP, Cha JH, Friedlander RM. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med. 2000 Jul;6(7):797-801. doi: 10.1038/77528.
Beal MF, Hyman BT, Koroshetz W. Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci. 1993 Apr;16(4):125-31. doi: 10.1016/0166-2236(93)90117-5.
Wellington CL, Ellerby LM, Hackam AS, Margolis RL, Trifiro MA, Singaraja R, McCutcheon K, Salvesen GS, Propp SS, Bromm M, Rowland KJ, Zhang T, Rasper D, Roy S, Thornberry N, Pinsky L, Kakizuka A, Ross CA, Nicholson DW, Bredesen DE, Hayden MR. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem. 1998 Apr 10;273(15):9158-67. doi: 10.1074/jbc.273.15.9158.
Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willig A, Kowall NW, Beal MF. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7105-9. doi: 10.1073/pnas.92.15.7105.
Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH. Mitochondrial defect in Huntington's disease caudate nucleus. Ann Neurol. 1996 Mar;39(3):385-9. doi: 10.1002/ana.410390317.
Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF. Energy metabolism defects in Huntington's disease and effects of coenzyme Q10. Ann Neurol. 1997 Feb;41(2):160-5. doi: 10.1002/ana.410410206.
Sawa A, Wiegand GW, Cooper J, Margolis RL, Sharp AH, Lawler JF Jr, Greenamyre JT, Snyder SH, Ross CA. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat Med. 1999 Oct;5(10):1194-8. doi: 10.1038/13518.
Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR. Evidence for impairment of energy metabolism in vivo in Huntington's disease using localized 1H NMR spectroscopy. Neurology. 1993 Dec;43(12):2689-95. doi: 10.1212/wnl.43.12.2689.
Lodi R, Schapira AH, Manners D, Styles P, Wood NW, Taylor DJ, Warner TT. Abnormal in vivo skeletal muscle energy metabolism in Huntington's disease and dentatorubropallidoluysian atrophy. Ann Neurol. 2000 Jul;48(1):72-6.
Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat Neurosci. 2002 Aug;5(8):731-6. doi: 10.1038/nn884.
Gines S, Seong IS, Fossale E, Ivanova E, Trettel F, Gusella JF, Wheeler VC, Persichetti F, MacDonald ME. Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington's disease knock-in mice. Hum Mol Genet. 2003 Mar 1;12(5):497-508. doi: 10.1093/hmg/ddg046.
Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann Neurol. 1997 May;41(5):646-53. doi: 10.1002/ana.410410514.
Ferrante RJ, Andreassen OA, Jenkins BG, Dedeoglu A, Kuemmerle S, Kubilus JK, Kaddurah-Daouk R, Hersch SM, Beal MF. Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease. J Neurosci. 2000 Jun 15;20(12):4389-97. doi: 10.1523/JNEUROSCI.20-12-04389.2000.
Ferrante RJ, Andreassen OA, Dedeoglu A, Ferrante KL, Jenkins BG, Hersch SM, Beal MF. Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington's disease. J Neurosci. 2002 Mar 1;22(5):1592-9. doi: 10.1523/JNEUROSCI.22-05-01592.2002.
Dedeoglu A, Kubilus JK, Yang L, Ferrante KL, Hersch SM, Beal MF, Ferrante RJ. Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington's disease transgenic mice. J Neurochem. 2003 Jun;85(6):1359-67. doi: 10.1046/j.1471-4159.2003.01706.x.
Schilling G, Coonfield ML, Ross CA, Borchelt DR. Coenzyme Q10 and remacemide hydrochloride ameliorate motor deficits in a Huntington's disease transgenic mouse model. Neurosci Lett. 2001 Nov 27;315(3):149-53. doi: 10.1016/s0304-3940(01)02326-6.
Matthews RT, Yang L, Browne S, Baik M, Beal MF. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8892-7. doi: 10.1073/pnas.95.15.8892.
Beal MF, Henshaw DR, Jenkins BG, Rosen BR, Schulz JB. Coenzyme Q10 and nicotinamide block striatal lesions produced by the mitochondrial toxin malonate. Ann Neurol. 1994 Dec;36(6):882-8. doi: 10.1002/ana.410360613.
Pepping J. Coenzyme Q10. Am J Health Syst Pharm. 1999 Mar 15;56(6):519-21. doi: 10.1093/ajhp/56.6.519. No abstract available.
Musumeci O, Naini A, Slonim AE, Skavin N, Hadjigeorgiou GL, Krawiecki N, Weissman BM, Tsao CY, Mendell JR, Shanske S, De Vivo DC, Hirano M, DiMauro S. Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology. 2001 Apr 10;56(7):849-55. doi: 10.1212/wnl.56.7.849.
Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta. 1995 May 24;1271(1):195-204. doi: 10.1016/0925-4439(95)00028-3.
Yamagami T, Okishio T, Toyama S, Kishi T. Correlation of serum coenzyme Q10 level and leukocute complex II activity in nformal and cardiovascular patients. In: Folkers K, Yamagami T, eds. Biomedical and clinical aspects of coenzyme Q: Elsevier Science Publishers, 1981: 79-89.
Soderberg M, Edlund C, Kristensson K, Dallner G. Lipid compositions of different regions of the human brain during aging. J Neurochem. 1990 Feb;54(2):415-23. doi: 10.1111/j.1471-4159.1990.tb01889.x.
Peyser CE, Folstein M, Chase GA, Starkstein S, Brandt J, Cockrell JR, Bylsma F, Coyle JT, McHugh PR, Folstein SE. Trial of d-alpha-tocopherol in Huntington's disease. Am J Psychiatry. 1995 Dec;152(12):1771-5. doi: 10.1176/ajp.152.12.1771.
Ranen NG, Peyser CE, Coyle JT, Bylsma FW, Sherr M, Day L, Folstein MF, Brandt J, Ross CA, Folstein SE. A controlled trial of idebenone in Huntington's disease. Mov Disord. 1996 Sep;11(5):549-54. doi: 10.1002/mds.870110510.
Kremer B, Clark CM, Almqvist EW, Raymond LA, Graf P, Jacova C, Mezei M, Hardy MA, Snow B, Martin W, Hayden MR. Influence of lamotrigine on progression of early Huntington disease: a randomized clinical trial. Neurology. 1999 Sep 22;53(5):1000-11. doi: 10.1212/wnl.53.5.1000.
Puri BK, Leavitt BR, Hayden MR, Ross CA, Rosenblatt A, Greenamyre JT, Hersch S, Vaddadi KS, Sword A, Horrobin DF, Manku M, Murck H. Ethyl-EPA in Huntington disease: a double-blind, randomized, placebo-controlled trial. Neurology. 2005 Jul 26;65(2):286-92. doi: 10.1212/01.wnl.0000169025.09670.6d.
Dubois B, Brand M, Garcia de Yebenes J, et al. European-Huntington's-disease-Initiative (EHDI)-Trial: Objectives, design, and description of the study population at the end of inclusion. Mov Dis 2002;17:S319.
Bogentoft C, Edelund P, Olsson B, Widlund L, Westensen K. Biopharmaceutical aspects of intraveneous and oral administration of coenzyme Q10. In: Folkers K, Littarru G, Yamagami T, eds. Biomedical and clinical aspects of coenzyme Q.: Elsevier Science Publishers, 1991: 215-224.
Lucker P, Wetselsberg N, Hennings G, Rehn D. Pharmacokinetics of coenzyme ubidecarenone in healthy volunteers. In: Folkers K, Littarru G, Yamagami T, eds. Biomedical and clinical aspects of coenzyme Q: Elsevier Science Publishers, 1984: 143-151.
Mohr D, Bowry VW, Stocker R. Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochim Biophys Acta. 1992 Jun 26;1126(3):247-54. doi: 10.1016/0005-2760(92)90237-p.
Micromedex. Ubidecarenone drug monograph. Engelwood 1995 May; Update 1998 Mar.
Zhang Y, Aberg F, Appelkvist EL, Dallner G, Ernster L. Uptake of dietary coenzyme Q supplement is limited in rats. J Nutr. 1995 Mar;125(3):446-53. doi: 10.1093/jn/125.3.446.
Weber C. Dietary intake and absorption of coenzyme Q. In: Kagan V, Quinn P, eds. Coenzyme Q: Molecular Mechanisms in Health and Disease. Boca Raton: CRC Press, 2001:209-215.
Rundek T, Naini A, Sacco R, Coates K, DiMauro S. Atorvastatin decreases the coenzyme Q10 level in the blood of patients at risk for cardiovascular disease and stroke. Arch Neurol. 2004 Jun;61(6):889-92. doi: 10.1001/archneur.61.6.889.
Saito Y, Kubo H, Bujo H, Yamamoto Y. The changes in plasma coenzyme Q10 level during the statin therapy for hypercholesterolemic patients. In: Second Conference of the International Coenzyme Q10 Association.; 2000, 2000: 59.
De Pinieux G, Chariot P, Ammi-Said M, Louarn F, Lejonc JL, Astier A, Jacotot B, Gherardi R. Lipid-lowering drugs and mitochondrial function: effects of HMG-CoA reductase inhibitors on serum ubiquinone and blood lactate/pyruvate ratio. Br J Clin Pharmacol. 1996 Sep;42(3):333-7. doi: 10.1046/j.1365-2125.1996.04178.x.
Watts GF, Castelluccio C, Rice-Evans C, Taub NA, Baum H, Quinn PJ. Plasma coenzyme Q (ubiquinone) concentrations in patients treated with simvastatin. J Clin Pathol. 1993 Nov;46(11):1055-7. doi: 10.1136/jcp.46.11.1055.
Laaksonen R, Jokelainen K, Laakso J, Sahi T, Harkonen M, Tikkanen MJ, Himberg JJ. The effect of simvastatin treatment on natural antioxidants in low-density lipoproteins and high-energy phosphates and ubiquinone in skeletal muscle. Am J Cardiol. 1996 Apr 15;77(10):851-4. doi: 10.1016/S0002-9149(97)89180-1.
Huntington Study Group. Minocycline safety and tolerability in Huntington disease. Neurology. 2004 Aug 10;63(3):547-9. doi: 10.1212/01.wnl.0000133403.30559.ff.
Langsjoen H, Langsjoen P, Langsjoen P, Willis R, Folkers K. Usefulness of coenzyme Q10 in clinical cardiology: a long-term study. Mol Aspects Med. 1994;15 Suppl:s165-75. doi: 10.1016/0098-2997(94)90026-4.
Ogasahara S, Engel AG, Frens D, Mack D. Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2379-82. doi: 10.1073/pnas.86.7.2379.
Di Giovanni S, Mirabella M, Spinazzola A, Crociani P, Silvestri G, Broccolini A, Tonali P, Di Mauro S, Servidei S. Coenzyme Q10 reverses pathological phenotype and reduces apoptosis in familial CoQ10 deficiency. Neurology. 2001 Aug 14;57(3):515-8. doi: 10.1212/wnl.57.3.515.
Lodi R, Hart PE, Rajagopalan B, Taylor DJ, Crilley JG, Bradley JL, Blamire AM, Manners D, Styles P, Schapira AH, Cooper JM. Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich's ataxia. Ann Neurol. 2001 May;49(5):590-6.
Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J, Kompoliti K, Perlmutter JS, Reich S, Stern M, Watts RL, Kurlan R, Molho E, Harrison M, Lew M; Parkinson Study Group. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol. 2002 Oct;59(10):1541-50. doi: 10.1001/archneur.59.10.1541.
Shults CW, Flint Beal M, Song D, Fontaine D. Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson's disease. Exp Neurol. 2004 Aug;188(2):491-4. doi: 10.1016/j.expneurol.2004.05.003.
Greenberg S, Frishman WH. Co-enzyme Q10: a new drug for cardiovascular disease. J Clin Pharmacol. 1990 Jul;30(7):596-608. doi: 10.1002/j.1552-4604.1990.tb01862.x.
McGarry A, Auinger P, Kieburtz KD, Bredlau AL, Hersch SM, Rosas HD. Suicidality Risk Factors Across the CARE-HD, 2CARE, and CREST-E Clinical Trials in Huntington Disease. Neurol Clin Pract. 2022 Apr;12(2):131-138. doi: 10.1212/CPJ.0000000000001161.
McGarry A, McDermott MP, Kieburtz K, Fung WLA, McCusker E, Peng J, de Blieck EA, Cudkowicz M; Huntington Study Group 2CARE Investigators and Coordinators. Risk factors for suicidality in Huntington disease: An analysis of the 2CARE clinical trial. Neurology. 2019 Apr 2;92(14):e1643-e1651. doi: 10.1212/WNL.0000000000007244. Epub 2019 Mar 8.
McGarry A, McDermott M, Kieburtz K, de Blieck EA, Beal F, Marder K, Ross C, Shoulson I, Gilbert P, Mallonee WM, Guttman M, Wojcieszek J, Kumar R, LeDoux MS, Jenkins M, Rosas HD, Nance M, Biglan K, Como P, Dubinsky RM, Shannon KM, O'Suilleabhain P, Chou K, Walker F, Martin W, Wheelock VL, McCusker E, Jankovic J, Singer C, Sanchez-Ramos J, Scott B, Suchowersky O, Factor SA, Higgins DS Jr, Molho E, Revilla F, Caviness JN, Friedman JH, Perlmutter JS, Feigin A, Anderson K, Rodriguez R, McFarland NR, Margolis RL, Farbman ES, Raymond LA, Suski V, Kostyk S, Colcher A, Seeberger L, Epping E, Esmail S, Diaz N, Fung WL, Diamond A, Frank S, Hanna P, Hermanowicz N, Dure LS, Cudkowicz M; Huntington Study Group 2CARE Investigators and Coordinators. A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease. Neurology. 2017 Jan 10;88(2):152-159. doi: 10.1212/WNL.0000000000003478. Epub 2016 Dec 2.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.