Correlation of Intrathoracic Impedance Measures With Blood Plasma Volume in Congestive Heart Failure
NCT ID: NCT00603213
Last Updated: 2013-05-22
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
25 participants
OBSERVATIONAL
2007-01-31
2011-02-28
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Blood Volume and Hemodynamic Analysis in Patients With Chronic Heart Failure
NCT02120014
Intravascular Volume Expansion to Neuroendocrine-Renal Function Profiles in Chronic Heart Failure
NCT04156854
Ventricular-Vascular Coupling in Heart Failure
NCT00207220
LV Diastolic Function vs IVC Diameter Variation as Predictor of Fluid Responsiveness in Shock
NCT05066256
Home-Based Fluid Status Monitoring in Heart Failure Patients
NCT04013373
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Current outpatient heart failure management programs focus on lifestyle changes, pharmacotherapy, and disease awareness, emphasizing self identification of signs and symptoms of volume overload. Despite the best efforts of all involved, frequent unscheduled visits to the outpatient clinic or emergency department remain common, even in those patients participating in formal management programs. Accurate identification of elevated filling pressures and intravascular volume prior to the significant worsening of symptoms remains an elusive goal of management.
Although elevated jugular venous pressure and the presence of a third heart sound have been shown to have prognostic value in patients with heart failure(2), physical exam findings of elevated filling pressures do not reliably correlate with invasive hemodynamics(3).
Invasive measurement of filling pressures and cardiac output with a pulmonary artery catheter has been the gold standard for hemodynamic assessment for decades. However, this method carries significant inherent risks of placement and maintenance and is not well-suited for frequent assessment in the outpatient setting. Development of a method that would accurately and reliably identify hypervolemia and elevated filling pressures prior to the onset of symptoms may allow earlier intervention and have a significant impact on quality of life, morbidity, and mortality in patients with CHF.
Blood volume analysis has been used for over 100 years in the assessment of plasma volume and red cell mass. Earlier techniques relied on dilution of various dyes and were based on the concept that the concentration of a known quantity of dye was inversely proportional to the volume of blood into which it was injected. Later, using the same concept, 51Cr labeled red blood cells and 125I labeled albumen, were developed to measure the red cell and plasma compartments respectively. Although the dual isotope method is considered the gold standard, it is cumbersome and requires at least 6 hours for completion.
A newer, highly automated method using 131I labeled albumen and serial hematocrit measurements (BVA-100, Daxor Corp. New York, NY) has been shown to correlate well with the dual isotope method requiring only 1 ½ hours for completion (Dworkin et al, unpublished data). Additionally, this method can automatically compare measured blood, plasma and red cell volumes to norms based on the sex, weight and height of the patient in the manner of Feldschuh and Enson(4).
Using this method, Androne et al(5) found that 65% of nonedematous CHF patients had unrecognized hypervolemia. More recently, anemia has been shown to be a poor prognostic marker in CHF. In a separate report, Androne et al(6) found that 46% of anemic CHF patients had dilutional anemia vs. 54% with true anemia. The success of targeted therapy may depend on determining whether anemia is dilutional or due to reduced red cell mass. Despite this method's accuracy, it is not practical for the serial measurements required to proactively intervene in a CHF population.
Transthoracic impedance cardiography (ICG) relies on changes in transthoracic electrical impedance when alternating currents are applied across the thorax. Derived measures include stroke volume, cardiac output and thoracic fluid content. Although earlier studies have validated the use of this method in the assessment of intrathoracic volume(7), there have been conflicting results in regard to the correlation of cardiac output (CO) derived from transthoracic ICG and that obtained from more traditional methods such as thermodilution, indicator dye-dilution and the Fick method(8). In addition, the cumbersome nature of serial data acquisition and the realization that derived hemodynamic data may be affected by lead placement make this method less attractive in the ambulatory setting.
Intrathoracic impedance is similar to transthoracic ICG in that it relies on changes in impedance as a surrogate marker of volume status. The technique measures impedance from a right ventricular lead to a pacing/defibrillator case. The technique is not subject to the operator dependent variability of ICG and is well suited to serial measurements in the outpatient setting.
The Optivol® system developed by Medtronic (Minneapolis, MN) employs proprietary software (TFS) that collects and averages impedance values during a specific time period each day to produce the Daily Impedance Value. The TFS software then derives and stores the Daily Mean Impedance, Reference Impedance, and Cumulative Difference from the Daily Impedance Value. The use of predetermined thresholds for the Cumulative Difference from the Daily Impedance Value can provide an early warning of increasing thoracic fluid. This data is accessible to health care practitioners through periodic download in the clinic via interrogation or through Medtronic's web-based CareLink system.
Abraham et al(9) demonstrated that TFS trends are consistent with clinical fluid status in a small group of patients. In addition, a recent study by Yu et al(10) found that intrathoracic impedance is inversely related to pulmonary capillary wedge pressure, and begins to decrease days before the onset of symptoms of CHF.
While data derived from the Optivol® system appears to mirror intrathoracic fluid content, and is useful for determining trends, certain shortcomings remain. First, though changes in intrathoracic impedance may inversely mirror changes in thoracic fluid content, the system provides no absolute reference standard to determine euvolemia in an individual patient. Secondly, it is unclear whether certain concomitant conditions (anemia, COPD) can affect the relationship.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_ONLY
PROSPECTIVE
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Blood Volume Analysis, Echocardiogram
Blood Volume Analysis: The use of radioactive tracer to determine plasma volume and red cell mass.
Echocardiogram is an ultrasound of the heart.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patients implanted with an Optivol ®device will be eligible for enrollment six months following implantation
* Women of childbearing potential may be included if they have a negative urine pregnancy test at the time of enrollment and agree to use effective contraception throughout the study and for 1 month following their participation
Exclusion Criteria
* Chronic pericardial or pleural effusion
* Serum albumen \< 2.8 g/dL
* Women who are pregnant or lactating
* Inability or unwillingness to maintain adequate contraception(women of childbearing potential) for the duration of the study and for 1 month following their participation
* Inability to give informed consent
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Medtronic
INDUSTRY
Medical University of South Carolina
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Adrian Van Bakel
Professor of Medicine
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Adrian VanBakel, MD
Role: PRINCIPAL_INVESTIGATOR
Medical University of South Carolina
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Medical University of South Carolina
Charleston, South Carolina, United States
Countries
Review the countries where the study has at least one active or historical site.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
HR16840
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.