Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
168 participants
INTERVENTIONAL
2004-02-29
2024-02-29
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Use of Graft Tensioner Device in ACL (Knee) Repair
NCT00221273
Prolonged Preoperative Rehabilitation in ACL Rupture.
NCT04888052
Exploring Prolonged AMR in ACL Reconstructed Patients
NCT06430775
Long-term Follow-up of Anterior Cruciate Ligament Injury
NCT03182647
Anterior Cruciate Ligament-reconstruction: Quadriceps Tendon or Hamstrings Tendon? A Prospective Trial
NCT02173483
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Participants will include candidates for ACL reconstruction surgery using patellar tendon or hamstring tendon grafts. Participants will be randomly assigned to one of two treatment groups:
* Low tension (Group 1) participants will receive low-tension treatment with initial graft tension set so that the anterior-posterior (A-P) displacement of the reconstructed knee is equal to that of the uninjured knee.
* High-tension (Group 2) participants will receive high-tension treatment with initial graft tension set to reduce A-P displacement by 2 millimeters relative to that of the uninjured knee.
Participants will enroll in this 15-year study 1 to 6 weeks prior to ACL surgery. There will be two preoperative study visits: one will include magnetic resonance imaging (MRI) and the other will include a knee evaluation, dynamic function testing, and questionnaires. Postoperative visits occurred immediately following surgery and at 6, 12, 36, 60, 84, 120, 144 and 180 months following surgery. Strength testing, functional testing, x-rays, questionnaires, and a knee exam will occur at most postoperative visits. MRIs will occur at some postoperative visits. An additional group of participants with no evidence of knee injury will serve as a control. The control group will attend all study visits except for the 12-month visit. All participants may be followed for up to 15 years.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
TRIPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Low-tension
Patients recruited to study the initial graft tension during ACL reconstruction surgery who were randomized to the Low-tension group will receive the low-tension treatment with initial graft tension set so that the anterior-posterior (A-P) displacement of the reconstructed knee is equal to that of the uninjured knee.
Initial graft tension during ACL reconstruction surgery
The amount of tension that is applied to the graft at the time of fixation is being performed with the knee in two different positions. When the knee is at 30 degrees of flexion, the resulting laxity is approximately 2 mm less than the contralateral leg (the "High Tension" treatment). When the tension is performed with the knee in extension (0 degrees of flexion), the the laxity is equal to that of the contralateral leg (the "Low Tension" treatment). Both methods are commonly used in clinical practice. The effect it may have on articular cartilage remains unknown.
High-tension
Patients recruited to study the initial graft tension during ACL reconstruction surgery who were randomized to the High-tension group will receive the high-tension treatment with the initial graft tension set to reduce A-P displacement by 2 millimeters relative to that of the uninjured knee.
Initial graft tension during ACL reconstruction surgery
The amount of tension that is applied to the graft at the time of fixation is being performed with the knee in two different positions. When the knee is at 30 degrees of flexion, the resulting laxity is approximately 2 mm less than the contralateral leg (the "High Tension" treatment). When the tension is performed with the knee in extension (0 degrees of flexion), the the laxity is equal to that of the contralateral leg (the "Low Tension" treatment). Both methods are commonly used in clinical practice. The effect it may have on articular cartilage remains unknown.
Uninjured Control Group
Uninjured age, sex, and race matched control group
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Initial graft tension during ACL reconstruction surgery
The amount of tension that is applied to the graft at the time of fixation is being performed with the knee in two different positions. When the knee is at 30 degrees of flexion, the resulting laxity is approximately 2 mm less than the contralateral leg (the "High Tension" treatment). When the tension is performed with the knee in extension (0 degrees of flexion), the the laxity is equal to that of the contralateral leg (the "Low Tension" treatment). Both methods are commonly used in clinical practice. The effect it may have on articular cartilage remains unknown.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Candidate for ACL reconstruction surgery using a bone-patellar tendon-bone graft or a four-stranded hamstring tendon graft (looped semitendinosus and gracilis muscles)
* Tegner activity score of 5 or greater, indicating participant is at least moderately active
* Tegner activity score of 5 or greater, indicating participant is at least moderately active
Exclusion Criteria
* Moderate-sized fissures or lesions in knee articular cartilage
* Meniscal tears requiring partial removal of meniscus (tears larger than 1/3 of the meniscus)
* Previous injury to either knee
* Increased laxity of the medial collateral ligament (MCL), lateral collateral ligament (LCL), or posterior cruciate ligament (PCL), as compared to the uninjured knee
* Radiographic evidence of degenerative arthritis
* Pregnancy
* Any disease that might place a participant at high risk for articular cartilage damage (e.g., rheumatoid arthritis, osteoporosis, metabolic diseases)
15 Years
50 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
NIH
Rhode Island Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Braden Fleming
Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Braden C. Fleming, PhD
Role: PRINCIPAL_INVESTIGATOR
Rhode Island Hospital/Brown Medical School
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Rhode Island Hospital/Brown University
Providence, Rhode Island, United States
Miriam Hospital/Brown University
Providence, Rhode Island, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Fleming BC, Hulstyn MJ, Oksendahl HL, Fadale PD. Ligament Injury, Reconstruction and Osteoarthritis. Curr Opin Orthop. 2005 Oct;16(5):354-362. doi: 10.1097/01.bco.0000176423.07865.d2.
Brady MF, Bradley MP, Fleming BC, Fadale PD, Hulstyn MJ, Banerjee R. Effects of initial graft tension on the tibiofemoral compressive forces and joint position after anterior cruciate ligament reconstruction. Am J Sports Med. 2007 Mar;35(3):395-403. doi: 10.1177/0363546506294363. Epub 2007 Jan 11.
Bowers ME, Tung GA, Trinh N, Leventhal E, Crisco JJ, Kimia B, Fleming BC. Effects of ACL interference screws on articular cartilage volume and thickness measurements with 1.5 T and 3 T MRI. Osteoarthritis Cartilage. 2008 May;16(5):572-8. doi: 10.1016/j.joca.2007.09.010. Epub 2007 Oct 22.
Elsaid KA, Fleming BC, Oksendahl HL, Machan JT, Fadale PD, Hulstyn MJ, Shalvoy R, Jay GD. Decreased lubricin concentrations and markers of joint inflammation in the synovial fluid of patients with anterior cruciate ligament injury. Arthritis Rheum. 2008 Jun;58(6):1707-15. doi: 10.1002/art.23495.
Fleming BC, Brady MF, Bradley MP, Banerjee R, Hulstyn MJ, Fadale PD. Tibiofemoral compression force differences using laxity- and force-based initial graft tensioning techniques in the anterior cruciate ligament-reconstructed cadaveric knee. Arthroscopy. 2008 Sep;24(9):1052-60. doi: 10.1016/j.arthro.2008.05.013. Epub 2008 Jun 30.
Bowers ME, Trinh N, Tung GA, Crisco JJ, Kimia BB, Fleming BC. Quantitative MR imaging using "LiveWire" to measure tibiofemoral articular cartilage thickness. Osteoarthritis Cartilage. 2008 Oct;16(10):1167-73. doi: 10.1016/j.joca.2008.03.005. Epub 2008 Apr 14.
Oksendahl HL, Gomez N, Thomas CS, Badger GD, Hulstyn MJ, Fadale PD, Fleming BC. Digital radiographic assessment of tibiofemoral joint space width: a variance component analysis. J Knee Surg. 2009 Jul;22(3):205-12. doi: 10.1055/s-0030-1247750.
Fleming BC, Oksendahl HL, Mehan WA, Portnoy R, Fadale PD, Hulstyn MJ, Bowers ME, Machan JT, Tung GA. Delayed Gadolinium-Enhanced MR Imaging of Cartilage (dGEMRIC) following ACL injury. Osteoarthritis Cartilage. 2010 May;18(5):662-7. doi: 10.1016/j.joca.2010.01.009. Epub 2010 Feb 11.
Mulcahey MK, Monchik KO, Yongpravat C, Badger GJ, Fadale PD, Hulstyn MJ, Fleming BC. Effects of single-bundle and double-bundle ACL reconstruction on tibiofemoral compressive stresses and joint kinematics during simulated squatting. Knee. 2012 Aug;19(4):469-76. doi: 10.1016/j.knee.2011.05.004. Epub 2011 Jun 22.
Miranda DL, Rainbow MJ, Crisco JJ, Fleming BC. Kinematic differences between optical motion capture and biplanar videoradiography during a jump-cut maneuver. J Biomech. 2013 Feb 1;46(3):567-73. doi: 10.1016/j.jbiomech.2012.09.023. Epub 2012 Oct 22.
Miranda DL, Schwartz JB, Loomis AC, Brainerd EL, Fleming BC, Crisco JJ. Static and dynamic error of a biplanar videoradiography system using marker-based and markerless tracking techniques. J Biomech Eng. 2011 Dec;133(12):121002. doi: 10.1115/1.4005471.
Bowers ME, Tung GA, Oksendahl HL, Hulstyn MJ, Fadale PD, Machan JT, Fleming BC. Quantitative magnetic resonance imaging detects changes in meniscal volume in vivo after partial meniscectomy. Am J Sports Med. 2010 Aug;38(8):1631-7. doi: 10.1177/0363546510364054. Epub 2010 May 4.
Coats-Thomas MS, Miranda DL, Badger GJ, Fleming BC. Effects of ACL reconstruction surgery on muscle activity of the lower limb during a jump-cut maneuver in males and females. J Orthop Res. 2013 Dec;31(12):1890-6. doi: 10.1002/jor.22470. Epub 2013 Aug 21.
Rainbow MJ, Miranda DL, Cheung RT, Schwartz JB, Crisco JJ, Davis IS, Fleming BC. Automatic determination of an anatomical coordinate system for a three-dimensional model of the human patella. J Biomech. 2013 Aug 9;46(12):2093-6. doi: 10.1016/j.jbiomech.2013.05.024. Epub 2013 Jun 20.
Miranda DL, Fadale PD, Hulstyn MJ, Shalvoy RM, Machan JT, Fleming BC. Knee biomechanics during a jump-cut maneuver: effects of sex and ACL surgery. Med Sci Sports Exerc. 2013 May;45(5):942-51. doi: 10.1249/MSS.0b013e31827bf0e4.
Zandiyeh P, Parola LR, Fleming BC, Beveridge JE. Wavelet analysis reveals differential lower limb muscle activity patterns long after anterior cruciate ligament reconstruction. J Biomech. 2022 Mar;133:110957. doi: 10.1016/j.jbiomech.2022.110957. Epub 2022 Jan 20.
Behnke AL, Parola LR, Karamchedu NP, Badger GJ, Fleming BC, Beveridge JE. Neuromuscular function in anterior cruciate ligament reconstructed patients at long-term follow-up. Clin Biomech (Bristol). 2021 Jan;81:105231. doi: 10.1016/j.clinbiomech.2020.105231. Epub 2020 Nov 17.
Zandiyeh P, Parola LR, Costa MQ, Hague MJ, Molino J, Fleming BC, Beveridge JE. Long-Term Bilateral Neuromuscular Function and Knee Osteoarthritis after Anterior Cruciate Ligament Reconstruction. Bioengineering (Basel). 2023 Jul 6;10(7):812. doi: 10.3390/bioengineering10070812.
Fleming BC, Fadale PD, Hulstyn MJ, Shalvoy RM, Oksendahl HL, Badger GJ, Tung GA. The effect of initial graft tension after anterior cruciate ligament reconstruction: a randomized clinical trial with 36-month follow-up. Am J Sports Med. 2013 Jan;41(1):25-34. doi: 10.1177/0363546512464200. Epub 2012 Nov 9.
Akelman MR, Fadale PD, Hulstyn MJ, Shalvoy RM, Garcia A, Chin KE, Duryea J, Badger GJ, Tung GA, Fleming BC. Effect of Matching or Overconstraining Knee Laxity During Anterior Cruciate Ligament Reconstruction on Knee Osteoarthritis and Clinical Outcomes: A Randomized Controlled Trial With 84-Month Follow-up. Am J Sports Med. 2016 Jul;44(7):1660-70. doi: 10.1177/0363546516638387. Epub 2016 Apr 19.
Biercevicz AM, Akelman MR, Fadale PD, Hulstyn MJ, Shalvoy RM, Badger GJ, Tung GA, Oksendahl HL, Fleming BC. MRI volume and signal intensity of ACL graft predict clinical, functional, and patient-oriented outcome measures after ACL reconstruction. Am J Sports Med. 2015 Mar;43(3):693-9. doi: 10.1177/0363546514561435. Epub 2014 Dec 24.
Ware JK, Owens BD, Akelman MR, Karamchedu NP, Fadale PD, Hulstyn MJ, Shalvoy RM, Badger GJ, Fleming BC. Preoperative KOOS and SF-36 Scores Are Associated With the Development of Symptomatic Knee Osteoarthritis at 7 Years After Anterior Cruciate Ligament Reconstruction. Am J Sports Med. 2018 Mar;46(4):869-875. doi: 10.1177/0363546517751661. Epub 2018 Feb 5.
DeFroda SF, Karamchedu NP, Owens BD, Bokshan SL, Sullivan K, Fadale PD, Hulstyn MJ, Shalvoy RM, Badger GJ, Fleming BC. Tibial tunnel widening following anterior cruciate ligament reconstruction: A retrospective seven-year study evaluating the effects of initial graft tensioning and graft selection. Knee. 2018 Dec;25(6):1107-1114. doi: 10.1016/j.knee.2018.08.003. Epub 2018 Nov 7.
Kiapour AM, Yang DS, Badger GJ, Karamchedu NP, Murray MM, Fadale PD, Hulstyn MJ, Shalvoy RM, Fleming BC. Anatomic Features of the Tibial Plateau Predict Outcomes of ACL Reconstruction Within 7 Years After Surgery. Am J Sports Med. 2019 Feb;47(2):303-311. doi: 10.1177/0363546518823556. Epub 2019 Jan 14.
Fleming BC, Fadale PD, Hulstyn MJ, Shalvoy RM, Tung GA, Badger GJ. Long-term outcomes of anterior cruciate ligament reconstruction surgery: 2020 OREF clinical research award paper. J Orthop Res. 2021 May;39(5):1041-1051. doi: 10.1002/jor.24794. Epub 2020 Jul 17.
DeFroda SF, Karamchedu NP, Budacki R, Wiley T, Fadale PD, Hulstyn MJ, Shalvoy RM, Badger GJ, Fleming BC, Owens BD. Evaluation of Graft Tensioning Effects in Anterior Cruciate Ligament Reconstruction between Hamstring and Bone-Patellar Tendon Bone Autografts. J Knee Surg. 2021 Jun;34(7):777-783. doi: 10.1055/s-0039-3402046. Epub 2020 Jan 21.
Costa MQ, Badger GJ, Chrostek CA, Carvalho OD, Faiola SL, Fadale PD, Hulstyn MJ, Gil HC, Shalvoy RM, Fleming BC. Effects of Initial Graft Tension and Patient Sex on Knee Osteoarthritis Outcomes After ACL Reconstruction: A Randomized Controlled Clinical Trial With 10- to 12-Year Follow-up. Am J Sports Med. 2022 Nov;50(13):3510-3521. doi: 10.1177/03635465221124917. Epub 2022 Oct 19.
Breker AN, Badger GJ, Kiapour AM, Costa MQ, Fleming EN, Ferrara SL, Chrostek CA, Fadale PD, Hulstyn MJ, Shalvoy RM, Gil HC, Fleming BC. Effect of Initial Graft Tension on Knee Osteoarthritis Outcomes After ACL Reconstruction: A Randomized Controlled Clinical Trial With 15-Year Follow-up. Orthop J Sports Med. 2025 Mar 4;13(3):23259671251320972. doi: 10.1177/23259671251320972. eCollection 2025 Mar.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Document Type: Informed Consent Form
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.