Study of Safety and Dosing Effect on SMN Levels of Valproic Acid (VPA) in Patients With Spinal Muscular Atrophy

NCT ID: NCT00374075

Last Updated: 2023-05-10

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

PHASE1

Total Enrollment

42 participants

Study Classification

INTERVENTIONAL

Study Start Date

2003-09-30

Study Completion Date

2006-02-28

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

This is an open label phase I/II clinical trial to assess safety, tolerability and potential effect on SMN mRNA and protein in vivo of a compound in which preliminary evidence supports a potential effect on SMN levels in vitro.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

This is an open label phase I/II trial of valproic acid in 40 SMA subjects \> 2 years of age with severe, intermediate, and mild phenotypes. Primary outcome measures includes laboratory and physical examination assessments to monitor effects on liver, hematologic, metabolic and nutritional status. Secondary outcomes includes measures of gross motor function; electrophysiologic measures of denervation; DEXA estimates of body composition, bone mineral density and content; measures of pulmonary function; and quantitative SMN mRNA and protein levels in blood cells. Subjects will need 2-3 baseline visits over a 3 -6 month period prior to enrollment. Follow-up visits will be scheduled at 3, 6 and 12 months on treatment.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Spinal Muscular Atrophy

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NON_RANDOMIZED

Intervention Model

SINGLE_GROUP

Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Valproic Acid

Intervention Type DRUG

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Patients must have a diagnosis of SMA, confirmed by genetic testing
* Only patients 2 years of age and older at enrollment will be eligible

Exclusion Criteria

* Patients taking any medications with known hepatotoxicity, congenital metabolic disorders or on multiple anticonvulsant medications
* Patients taking medications which may interact with VPA
* Patients on ventilatory support for more than 16 hours per day
* Patients currently enrolled in other treatment trials
Minimum Eligible Age

2 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Families of Spinal Muscular Atrophy

OTHER

Sponsor Role collaborator

Leadiant Biosciences, Inc.

INDUSTRY

Sponsor Role collaborator

Abbott

INDUSTRY

Sponsor Role collaborator

University of Utah

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Kathryn J Swoboda, M.D

Role: PRINCIPAL_INVESTIGATOR

University of Utah/Primary Children's Medical Center

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University of Utah/Primary Children's Medical Center

Salt Lake City, Utah, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Brahe C, Bertini E. Spinal muscular atrophies: recent insights and impact on molecular diagnosis. J Mol Med (Berl). 1996 Oct;74(10):555-62. doi: 10.1007/s001090050059.

Reference Type BACKGROUND
PMID: 8912176 (View on PubMed)

Roberts DF, Chavez J, Court SD. The genetic component in child mortality. Arch Dis Child. 1970 Feb;45(239):33-8. doi: 10.1136/adc.45.239.33.

Reference Type BACKGROUND
PMID: 4245389 (View on PubMed)

Pearn J. Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy. J Med Genet. 1978 Dec;15(6):409-13. doi: 10.1136/jmg.15.6.409.

Reference Type BACKGROUND
PMID: 745211 (View on PubMed)

Czeizel A, Hamula J. A hungarian study on Werdnig-Hoffmann disease. J Med Genet. 1989 Dec;26(12):761-3. doi: 10.1136/jmg.26.12.761.

Reference Type BACKGROUND
PMID: 2614795 (View on PubMed)

Emery AE. Population frequencies of inherited neuromuscular diseases--a world survey. Neuromuscul Disord. 1991;1(1):19-29. doi: 10.1016/0960-8966(91)90039-u.

Reference Type BACKGROUND
PMID: 1822774 (View on PubMed)

Merlini L, Stagni SB, Marri E, Granata C. Epidemiology of neuromuscular disorders in the under-20 population in Bologna Province, Italy. Neuromuscul Disord. 1992;2(3):197-200. doi: 10.1016/0960-8966(92)90006-r.

Reference Type BACKGROUND
PMID: 1483045 (View on PubMed)

Pearn J. Classification of spinal muscular atrophies. Lancet. 1980 Apr 26;1(8174):919-22. doi: 10.1016/s0140-6736(80)90847-8.

Reference Type BACKGROUND
PMID: 6103267 (View on PubMed)

Bromberg MB, Swoboda KJ. Motor unit number estimation in infants and children with spinal muscular atrophy. Muscle Nerve. 2002 Mar;25(3):445-7. doi: 10.1002/mus.10050.

Reference Type BACKGROUND
PMID: 11870724 (View on PubMed)

Swoboda KJ, Prior TW, Scott CB, McNaught TP, Wride MC, Reyna SP, Bromberg MB. Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Ann Neurol. 2005 May;57(5):704-12. doi: 10.1002/ana.20473.

Reference Type BACKGROUND
PMID: 15852397 (View on PubMed)

Crawford TO. From enigmatic to problematic: the new molecular genetics of childhood spinal muscular atrophy. Neurology. 1996 Feb;46(2):335-40. doi: 10.1212/wnl.46.2.335. No abstract available.

Reference Type BACKGROUND
PMID: 8614490 (View on PubMed)

Gilliam TC, Brzustowicz LM, Castilla LH, Lehner T, Penchaszadeh GK, Daniels RJ, Byth BC, Knowles J, Hislop JE, Shapira Y, et al. Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature. 1990 Jun 28;345(6278):823-5. doi: 10.1038/345823a0.

Reference Type BACKGROUND
PMID: 1972783 (View on PubMed)

Melki J, Lefebvre S, Burglen L, Burlet P, Clermont O, Millasseau P, Reboullet S, Benichou B, Zeviani M, Le Paslier D, et al. De novo and inherited deletions of the 5q13 region in spinal muscular atrophies. Science. 1994 Jun 3;264(5164):1474-7. doi: 10.1126/science.7910982.

Reference Type BACKGROUND
PMID: 7910982 (View on PubMed)

Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AH, McPherson JD. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet. 1999 Jul;8(7):1177-83. doi: 10.1093/hmg/8.7.1177.

Reference Type BACKGROUND
PMID: 10369862 (View on PubMed)

Campbell L, Potter A, Ignatius J, Dubowitz V, Davies K. Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype. Am J Hum Genet. 1997 Jul;61(1):40-50. doi: 10.1086/513886.

Reference Type BACKGROUND
PMID: 9245983 (View on PubMed)

Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, Dreyfuss G, Melki J. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet. 1997 Jul;16(3):265-9. doi: 10.1038/ng0797-265.

Reference Type BACKGROUND
PMID: 9207792 (View on PubMed)

Monani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT, Jablonka S, Schrank B, Rossoll W, Prior TW, Morris GE, Burghes AH. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet. 2000 Feb 12;9(3):333-9. doi: 10.1093/hmg/9.3.333.

Reference Type BACKGROUND
PMID: 10655541 (View on PubMed)

Feldkotter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet. 2002 Feb;70(2):358-68. doi: 10.1086/338627. Epub 2001 Dec 21.

Reference Type BACKGROUND
PMID: 11791208 (View on PubMed)

Mailman MD, Heinz JW, Papp AC, Snyder PJ, Sedra MS, Wirth B, Burghes AH, Prior TW. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet Med. 2002 Jan-Feb;4(1):20-6. doi: 10.1097/00125817-200201000-00004.

Reference Type BACKGROUND
PMID: 11839954 (View on PubMed)

Fischer U, Liu Q, Dreyfuss G. The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell. 1997 Sep 19;90(6):1023-9. doi: 10.1016/s0092-8674(00)80368-2.

Reference Type BACKGROUND
PMID: 9323130 (View on PubMed)

Chang JG, Hsieh-Li HM, Jong YJ, Wang NM, Tsai CH, Li H. Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9808-13. doi: 10.1073/pnas.171105098.

Reference Type BACKGROUND
PMID: 11504946 (View on PubMed)

Andreassi C, Jarecki J, Zhou J, Coovert DD, Monani UR, Chen X, Whitney M, Pollok B, Zhang M, Androphy E, Burghes AH. Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients. Hum Mol Genet. 2001 Nov 15;10(24):2841-9. doi: 10.1093/hmg/10.24.2841.

Reference Type BACKGROUND
PMID: 11734549 (View on PubMed)

Brichta L, Hofmann Y, Hahnen E, Siebzehnrubl FA, Raschke H, Blumcke I, Eyupoglu IY, Wirth B. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet. 2003 Oct 1;12(19):2481-9. doi: 10.1093/hmg/ddg256. Epub 2003 Jul 29.

Reference Type BACKGROUND
PMID: 12915451 (View on PubMed)

Andreassi C, Angelozzi C, Tiziano FD, Vitali T, De Vincenzi E, Boninsegna A, Villanova M, Bertini E, Pini A, Neri G, Brahe C. Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet. 2004 Jan;12(1):59-65. doi: 10.1038/sj.ejhg.5201102.

Reference Type BACKGROUND
PMID: 14560316 (View on PubMed)

Bohmer T, Rydning A, Solberg HE. Carnitine levels in human serum in health and disease. Clin Chim Acta. 1974 Nov 20;57(1):55-61. doi: 10.1016/0009-8981(74)90177-6. No abstract available.

Reference Type BACKGROUND
PMID: 4279150 (View on PubMed)

Brooks H, Goldberg L, Holland R, Klein M, Sanzari N, DeFelice S. Carnitine-induced effects on cardiac and peripheral hemodynamics. J Clin Pharmacol. 1977 Oct;17(10 Pt 1):561-8. doi: 10.1177/009127007701701003. No abstract available.

Reference Type BACKGROUND
PMID: 915022 (View on PubMed)

Christiansen RZ, Bremer J. Active transport of butyrobetaine and carnitine into isolated liver cells. Biochim Biophys Acta. 1976 Nov 2;448(4):562-77. doi: 10.1016/0005-2736(76)90110-3.

Reference Type BACKGROUND
PMID: 974147 (View on PubMed)

Lindstedt S, Lindstedt G. Distribution and Excretion of Carnitine in the Rat. Acta. Chem. Scand. 1961; 15:701-702

Reference Type BACKGROUND

Rebouche CJ, Engel AG. Carnitine metabolism and deficiency syndromes. Mayo Clin Proc. 1983 Aug;58(8):533-40.

Reference Type BACKGROUND
PMID: 6348429 (View on PubMed)

Rebouche CJ, Paulson DJ. Carnitine metabolism and function in humans. Annu Rev Nutr. 1986;6:41-66. doi: 10.1146/annurev.nu.06.070186.000353.

Reference Type BACKGROUND
PMID: 3524622 (View on PubMed)

Igarashi N, Sato T, Kyouya S. Secondary carnitine deficiency in handicapped patients receiving valproic acid and/or elemental diet. Acta Paediatr Jpn. 1990 Apr;32(2):139-45. doi: 10.1111/j.1442-200x.1990.tb00799.x.

Reference Type BACKGROUND
PMID: 2143048 (View on PubMed)

Thurston JH, Hauhart RE. Amelioration of adverse effects of valproic acid on ketogenesis and liver coenzyme A metabolism by cotreatment with pantothenate and carnitine in developing mice: possible clinical significance. Pediatr Res. 1992 Apr;31(4 Pt 1):419-23. doi: 10.1203/00006450-199204000-00023.

Reference Type BACKGROUND
PMID: 1570210 (View on PubMed)

Tein I, DiMauro S, Xie ZW, De Vivo DC. Valproic acid impairs carnitine uptake in cultured human skin fibroblasts. An in vitro model for the pathogenesis of valproic acid-associated carnitine deficiency. Pediatr Res. 1993 Sep;34(3):281-7. doi: 10.1203/00006450-199309000-00008.

Reference Type BACKGROUND
PMID: 8134167 (View on PubMed)

Melegh B, Pap M, Morava E, Molnar D, Dani M, Kurucz J. Carnitine-dependent changes of metabolic fuel consumption during long-term treatment with valproic acid. J Pediatr. 1994 Aug;125(2):317-21. doi: 10.1016/s0022-3476(94)70218-7.

Reference Type BACKGROUND
PMID: 8040784 (View on PubMed)

Tein I, Xie ZW. Reversal of valproic acid-associated impairment of carnitine uptake in cultured human skin fibroblasts. Biochem Biophys Res Commun. 1994 Oct 28;204(2):753-8. doi: 10.1006/bbrc.1994.2523.

Reference Type BACKGROUND
PMID: 7980539 (View on PubMed)

Van Wouwe JP. Carnitine deficiency during valproic acid treatment. Int J Vitam Nutr Res. 1995;65(3):211-4.

Reference Type BACKGROUND
PMID: 8830002 (View on PubMed)

Evangeliou A, Vlassopoulos D. Carnitine metabolism and deficit--when supplementation is necessary? Curr Pharm Biotechnol. 2003 Jun;4(3):211-9. doi: 10.2174/1389201033489829.

Reference Type BACKGROUND
PMID: 12769764 (View on PubMed)

Coulter DL. Carnitine deficiency: a possible mechanism for valproate hepatotoxicity. Lancet. 1984 Mar 24;1(8378):689. doi: 10.1016/s0140-6736(84)92209-8. No abstract available.

Reference Type BACKGROUND
PMID: 6142383 (View on PubMed)

Coulter DL. Carnitine, valproate, and toxicity. J Child Neurol. 1991 Jan;6(1):7-14. doi: 10.1177/088307389100600102.

Reference Type BACKGROUND
PMID: 2002205 (View on PubMed)

Scriver C, Beautet A, Sly W ,Valle D. The Metabolic Basis of Inherited Disease. New York: McGraw Hill,1989

Reference Type BACKGROUND

Schaub J, Van Hoof F, Vis H.Inborn Errors of Metabolism. New York:Raven Press, 1991

Reference Type BACKGROUND

Standardization of Spirometry, 1994 Update. American Thoracic Society. Am J Respir Crit Care Med. 1995 Sep;152(3):1107-36. doi: 10.1164/ajrccm.152.3.7663792. No abstract available.

Reference Type BACKGROUND
PMID: 7663792 (View on PubMed)

American Thoracic Society/European Respiratory Society. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002 Aug 15;166(4):518-624. doi: 10.1164/rccm.166.4.518. No abstract available.

Reference Type BACKGROUND
PMID: 12186831 (View on PubMed)

Swoboda KJ, Scott CB, Reyna SP, Prior TW, LaSalle B, Sorenson SL, Wood J, Acsadi G, Crawford TO, Kissel JT, Krosschell KJ, D'Anjou G, Bromberg MB, Schroth MK, Chan GM, Elsheikh B, Simard LR. Phase II open label study of valproic acid in spinal muscular atrophy. PLoS One. 2009;4(5):e5268. doi: 10.1371/journal.pone.0005268. Epub 2009 May 14.

Reference Type DERIVED
PMID: 19440247 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

11893

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Sodium Valproate for GSDV
NCT03112889 COMPLETED PHASE2
4-Aminopyridine in Episodic Ataxia Type 2
NCT01543750 WITHDRAWN PHASE2
Memantine for Enhanced Stroke Recovery
NCT02144584 ACTIVE_NOT_RECRUITING EARLY_PHASE1
Dimethyl Fumarate in Adrenomyeloneuropathy
NCT06513533 RECRUITING PHASE2/PHASE3