Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
1500 participants
OBSERVATIONAL
2006-02-28
2026-07-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
A Safety and Efficacy Study of Infusions of HepaStem in Urea Cycle Disorders Pediatric Patients
NCT03884959
Estimation of Kidney Function Through Combination of Renal Biomarkers in Blood and Urine of Healthy Infants and Children.
NCT03751397
Effect of Daily Transcutaneous Auricular Vagus Nerve Stimulation (taVNS) on Proteinuria in Pediatric Patients With Idiopathic Nephrotic Syndrome
NCT04169776
Study to Evaluate the Efficacy of HepaStem in Urea Cycle Disorders Paediatric Patients (HEP002)
NCT02489292
Haemolytic Uraemic Syndrome in Childhood: Clinical, Cognitive and Psychological Aspects
NCT01666548
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
All UCDs, except for one (ornithine transcarbamylase deficiency), are inherited as recessive traits. The purpose of this study is to perform a long-term analysis of a large group of individuals with various UCDs. Biochemical status, growth, and cognitive function will be assessed. Survival and cognitive outcome of the two most commonly used forms of treatment, alternate pathway therapy and transplantation, will be evaluated. In addition, this study will identify the biochemical changes that may predict future metabolic imbalances so that they may be corrected before clinical symptoms develop.
This observational study is funded through 2025. All participants will attend an initial study visit, which will include a medical and diet history, physical and neurological examinations, psychological testing, and blood tests. Participants will then be followed with subsequent study visits, which will last 2-3 hours each. Individuals with neonatal onset UCD will be assessed every 3 months until age 2 and every 6 months thereafter. Individuals with late onset UCD will be evaluated every 6 months. Psychological testing will take place every 2 years. Psychological testing will take from 30 minutes (for younger children) up to 3 hours, depending on test battery.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Diagnosis of CPS I deficiency, defined as decreased (less than 20 % of control) CPS I enzyme activity in liver, and/or an identified pathogenic mutation, and/or hyperammonemia and first degree relative meets at least one of the criteria for CPS I deficiency
* Diagnosis of OTC deficiency, defined as the identification of a pathogenic mutation, and/or less than 20% of control of OTC activity in the liver, and/or elevated urinary orotate (greater than 20 uM/mM) in a random urine sample or after allopurinol challenge test, and/or hyperammonemia and first degree relative meets at least one of the criteria for OTC deficiency
* Diagnosis of AS deficiency (Citrullinemia), defined as a greater than or equal to 10-fold elevation of citrulline in plasma, and/or decreased AS enzyme activity in cultured skin fibroblasts or other appropriate tissue, and/or identification of a pathogenic mutation in the AS gene, and/or hyperammonemia and first degree relative meets at least one of the criteria for AS Deficiency
* Diagnosis of AL deficiency (Argininosuccinic Aciduria, ASA), defined as the presence of argininosuccinic acid in the blood or urine, and/or decreased AL enzyme activity in cultured skin fibroblasts or other appropriate tissue, and/or identification of a pathogenic mutation in the AL gene, and/or hyperammonemia and first degree relative meets at least one of the criteria for AL Deficiency
* Diagnosis of ARG deficiency (Hyperargininemia), defined as a greater than or equal to 5-fold elevated arginine levels in the blood, and/or decreased arginase enzyme levels in red blood cells or other appropriate tissue, and/or identification of a pathogenic mutation in the ARG gene, and/or hyperammonemia and first degree relative meets at least one of the criteria for ARG Deficiency
* Diagnosis of HHH Syndrome or ORNT deficiency, defined as a greater than or equal to 5-fold elevated plasma ornithine and homocitrulline levels in the urine, and/or a pathogenic mutation, and/or less than 20% residual labeled ornithine incorporation into protein in cultured fibroblasts, and/or hyperammonemia and first degree relative meets at least one of the criteria for HHH Syndrome or ORNT Deficiency
* Diagnosis of CITR deficiency (Citrullinemia Type II), defined as elevated citrulline levels in the blood and a pathogenic mutation and/or hyperammonemia and first degree relative meets criteria for CITR Deficiency
* Pending diagnosis of a UCD (UCD highly likely), defined as laboratory values highly suggestive of a UCD with symptomatic hyperammonemic episodes but without a verifiable diagnosis
Exclusion Criteria
* Rare and unrelated comorbidities (e.g., Down's syndrome, intraventricular hemorrhage in the newborn period, and extreme prematurity)
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Center for Research Resources (NCRR)
NIH
Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
NIH
Rare Diseases Clinical Research Network
NETWORK
Andrea Gropman
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Andrea Gropman
Principal Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Andrea Gropman, MD
Role: STUDY_CHAIR
Children's National Research Institute
Susan Berry, MD
Role: STUDY_CHAIR
University of Minnesota Masonic Children's Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of California, Los Angeles
Los Angeles, California, United States
Stanford University Medical Center
Stanford, California, United States
Children's Hospital Colorado
Aurora, Colorado, United States
Children's National Medical Center
Washington D.C., District of Columbia, United States
Children's Hospital Boston (UCDC New England Center)
Boston, Massachusetts, United States
University of Minnesota
Minneapolis, Minnesota, United States
Icahn School of Medicine at Mount Sinai
New York, New York, United States
Case Western Medical College
Cleveland, Ohio, United States
Oregon Health and Science University
Portland, Oregon, United States
Children's Hospital of Philadelphia
Philadelphia, Pennsylvania, United States
Baylor College of Medicine
Houston, Texas, United States
Children's Hospital and Regional Medical Center
Seattle, Washington, United States
The Hospital for Sick Children
Toronto, Ontario, Canada
University of Heidelberg
Heidelberg, , Germany
University Children's Hospital
Zurich, , Switzerland
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Role: backup
References
Explore related publications, articles, or registry entries linked to this study.
Patrick TB, Richesson R, Andrews JE, Folk LC. SNOMED CT coding variation and grouping for "other findings" in a longitudinal study on urea cycle disorders. AMIA Annu Symp Proc. 2008 Nov 6;2008:11-5.
Richesson RL, Lee HS, Cuthbertson D, Lloyd J, Young K, Krischer JP. An automated communication system in a contact registry for persons with rare diseases: scalable tools for identifying and recruiting clinical research participants. Contemp Clin Trials. 2009 Jan;30(1):55-62. doi: 10.1016/j.cct.2008.09.002. Epub 2008 Sep 7.
Mitchell S, Ellingson C, Coyne T, Hall L, Neill M, Christian N, Higham C, Dobrowolski SF, Tuchman M, Summar M; Urea Cycle Disorder Consortium. Genetic variation in the urea cycle: a model resource for investigating key candidate genes for common diseases. Hum Mutat. 2009 Jan;30(1):56-60. doi: 10.1002/humu.20813.
Jain-Ghai S, Nagamani SC, Blaser S, Siriwardena K, Feigenbaum A. Arginase I deficiency: severe infantile presentation with hyperammonemia: more common than reported? Mol Genet Metab. 2011 Sep-Oct;104(1-2):107-11. doi: 10.1016/j.ymgme.2011.06.025. Epub 2011 Jul 13.
Wilson JM, Shchelochkov OA, Gallagher RC, Batshaw ML. Hepatocellular carcinoma in a research subject with ornithine transcarbamylase deficiency. Mol Genet Metab. 2012 Feb;105(2):263-5. doi: 10.1016/j.ymgme.2011.10.016. Epub 2011 Nov 7.
Burrage LC, Jain M, Gandolfo L, Lee BH; Members of the Urea Cycle Disorders Consortium; Nagamani SC. Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders. Mol Genet Metab. 2014 Sep-Oct;113(1-2):131-5. doi: 10.1016/j.ymgme.2014.06.005. Epub 2014 Jul 3.
Burrage LC, Sun Q, Elsea SH, Jiang MM, Nagamani SC, Frankel AE, Stone E, Alters SE, Johnson DE, Rowlinson SW, Georgiou G; Members of Urea Cycle Disorders Consortium; Lee BH. Human recombinant arginase enzyme reduces plasma arginine in mouse models of arginase deficiency. Hum Mol Genet. 2015 Nov 15;24(22):6417-27. doi: 10.1093/hmg/ddv352. Epub 2015 Sep 10.
Krivitzky LS, Walsh KS, Fisher EL, Berl MM. Executive functioning profiles from the BRIEF across pediatric medical disorders: Age and diagnosis factors. Child Neuropsychol. 2016;22(7):870-88. doi: 10.1080/09297049.2015.1054272. Epub 2015 Jul 6.
Waisbren SE, He J, McCarter R. Assessing Psychological Functioning in Metabolic Disorders: Validation of the Adaptive Behavior Assessment System, Second Edition (ABAS-II), and the Behavior Rating Inventory of Executive Function (BRIEF) for Identification of Individuals at Risk. JIMD Rep. 2015;21:35-43. doi: 10.1007/8904_2014_373. Epub 2015 Feb 25.
Kolker S, Dobbelaere D, Haberle J, Burgard P, Gleich F, Summar ML, Hannigan S, Parker S, Chakrapani A, Baumgartner MR; E-IMD Consortium. Networking Across Borders for Individuals with Organic Acidurias and Urea Cycle Disorders: The E-IMD Consortium. JIMD Rep. 2015;22:29-38. doi: 10.1007/8904_2015_408. Epub 2015 Feb 22.
Posset R, Garbade SF, Boy N, Burlina AB, Dionisi-Vici C, Dobbelaere D, Garcia-Cazorla A, de Lonlay P, Teles EL, Vara R, Mew NA, Batshaw ML, Baumgartner MR, McCandless SE, Seminara J, Summar M, Hoffmann GF, Kolker S, Burgard P; Additional individual contributors of the UCDC and the E-IMD consortium. Transatlantic combined and comparative data analysis of 1095 patients with urea cycle disorders-A successful strategy for clinical research of rare diseases. J Inherit Metab Dis. 2019 Jan;42(1):93-106. doi: 10.1002/jimd.12031.
Shapiro E, Bernstein J, Adams HR, Barbier AJ, Buracchio T, Como P, Delaney KA, Eichler F, Goldsmith JC, Hogan M, Kovacs S, Mink JW, Odenkirchen J, Parisi MA, Skrinar A, Waisbren SE, Mulberg AE. Neurocognitive clinical outcome assessments for inborn errors of metabolism and other rare conditions. Mol Genet Metab. 2016 Jun;118(2):65-9. doi: 10.1016/j.ymgme.2016.04.006. Epub 2016 Apr 14.
Summar ML, Koelker S, Freedenberg D, Le Mons C, Haberle J, Lee HS, Kirmse B; European Registry and Network for Intoxication Type Metabolic Diseases (E-IMD). Electronic address: http://www.e-imd.org/en/index.phtml; Members of the Urea Cycle Disorders Consortium (UCDC). Electronic address: http://rarediseasesnetwork.epi.usf.edu/ucdc/. The incidence of urea cycle disorders. Mol Genet Metab. 2013 Sep-Oct;110(1-2):179-80. doi: 10.1016/j.ymgme.2013.07.008. Epub 2013 Jul 18.
Waisbren SE, Cuthbertson D, Burgard P, Holbert A, McCarter R, Cederbaum S; Members of the Urea Cycle Disorders Consortium. Biochemical markers and neuropsychological functioning in distal urea cycle disorders. J Inherit Metab Dis. 2018 Jul;41(4):657-667. doi: 10.1007/s10545-017-0132-5. Epub 2018 Feb 8.
Waisbren SE, Stefanatos AK, Kok TMY, Ozturk-Hismi B. Neuropsychological attributes of urea cycle disorders: A systematic review of the literature. J Inherit Metab Dis. 2019 Nov;42(6):1176-1191. doi: 10.1002/jimd.12146. Epub 2019 Aug 1.
Lerner S, Anderzhanova E, Verbitsky S, Eilam R, Kuperman Y, Tsoory M, Kuznetsov Y, Brandis A, Mehlman T, Mazkereth R; UCDC Neuropsychologists; McCarter R, Segal M, Nagamani SCS, Chen A, Erez A. ASL Metabolically Regulates Tyrosine Hydroxylase in the Nucleus Locus Coeruleus. Cell Rep. 2019 Nov 19;29(8):2144-2153.e7. doi: 10.1016/j.celrep.2019.10.043.
Posset R, Gropman AL, Nagamani SCS, Burrage LC, Bedoyan JK, Wong D, Berry GT, Baumgartner MR, Yudkoff M, Zielonka M, Hoffmann GF, Burgard P, Schulze A, McCandless SE, Garcia-Cazorla A, Seminara J, Garbade SF, Kolker S; Urea Cycle Disorders Consortium and the European Registry and Network for Intoxication Type Metabolic Diseases Consortia Study Group. Impact of Diagnosis and Therapy on Cognitive Function in Urea Cycle Disorders. Ann Neurol. 2019 Jul;86(1):116-128. doi: 10.1002/ana.25492. Epub 2019 May 13.
Zielonka M, Kolker S, Gleich F, Stutzenberger N, Nagamani SCS, Gropman AL, Hoffmann GF, Garbade SF, Posset R; Urea Cycle Disorders Consortium (UCDC) and the European Registry and Network for Intoxication type Metabolic Diseases (E-IMD) Consortia Study Group. Early prediction of phenotypic severity in Citrullinemia Type 1. Ann Clin Transl Neurol. 2019 Sep;6(9):1858-1871. doi: 10.1002/acn3.50886. Epub 2019 Aug 30.
Burrage LC, Madan S, Li X, Ali S, Mohammad M, Stroup BM, Jiang MM, Cela R, Bertin T, Jin Z, Dai J, Guffey D, Finegold M; Members of the Urea Cycle Disorders Consortium (UCDC); Nagamani S, Minard CG, Marini J, Masand P, Schady D, Shneider BL, Leung DH, Bali D, Lee B. Chronic liver disease and impaired hepatic glycogen metabolism in argininosuccinate lyase deficiency. JCI Insight. 2020 Feb 27;5(4):e132342. doi: 10.1172/jci.insight.132342.
Zielonka M, Garbade SF, Gleich F, Okun JG, Nagamani SCS, Gropman AL, Hoffmann GF, Kolker S, Posset R; Urea Cycle Disorders Consortium (UCDC) and the European registry and network for Intoxication type Metabolic Diseases (E-IMD) Consortia Study Group. From genotype to phenotype: Early prediction of disease severity in argininosuccinic aciduria. Hum Mutat. 2020 May;41(5):946-960. doi: 10.1002/humu.23983. Epub 2020 Jan 30.
Nagamani SCS, Ali S, Izem R, Schady D, Masand P, Shneider BL, Leung DH, Burrage LC. Biomarkers for liver disease in urea cycle disorders. Mol Genet Metab. 2021 Jun;133(2):148-156. doi: 10.1016/j.ymgme.2021.04.001. Epub 2021 Apr 8.
Scharre S, Posset R, Garbade SF, Gleich F, Seidl MJ, Druck AC, Okun JG, Gropman AL, Nagamani SCS, Hoffmann GF, Kolker S, Zielonka M; Urea Cycle Disorders Consortium (UCDC) and the European registry and network for Intoxication type Metabolic Diseases (E-IMD) Consortia Study Group. Predicting the disease severity in male individuals with ornithine transcarbamylase deficiency. Ann Clin Transl Neurol. 2022 Nov;9(11):1715-1726. doi: 10.1002/acn3.51668. Epub 2022 Oct 10.
Sen K, Whitehead M, Castillo Pinto C, Caldovic L, Gropman A. Fifteen years of urea cycle disorders brain research: Looking back, looking forward. Anal Biochem. 2022 Jan 1;636:114343. doi: 10.1016/j.ab.2021.114343. Epub 2021 Oct 9.
Izem R, McCarter R. Randomized and non-randomized designs for causal inference with longitudinal data in rare disorders. Orphanet J Rare Dis. 2021 Nov 23;16(1):491. doi: 10.1186/s13023-021-02124-5.
Lerner S, Eilam R, Adler L, Baruteau J, Kreiser T, Tsoory M, Brandis A, Mehlman T, Ryten M, Botia JA, Ruiz SG, Garcia AC, Dionisi-Vici C, Ranucci G, Spada M, Mazkereth R, McCarter R, Izem R, Balmat TJ, Richesson R; Members of the UCDC; Gazit E, Nagamani SCS, Erez A. ASL expression in ALDH1A1+ neurons in the substantia nigra metabolically contributes to neurodegenerative phenotype. Hum Genet. 2021 Oct;140(10):1471-1485. doi: 10.1007/s00439-021-02345-5. Epub 2021 Aug 21.
McGowan M, Ferreira C, Whitehead M, Basu SK, Chang T, Gropman A. The Application of Neurodiagnostic Studies to Inform the Acute Management of a Newborn Presenting With Sarbamoyl Shosphate Synthetase 1 Deficiency. Child Neurol Open. 2021 Jan 22;8:2329048X20985179. doi: 10.1177/2329048X20985179. eCollection 2021 Jan-Dec.
Sen K, Castillo Pinto C, Gropman AL. Expanding Role of Proton Magnetic Resonance Spectroscopy: Timely Diagnosis and Treatment Initiation in Partial Ornithine Transcarbamylase Deficiency. J Pediatr Genet. 2021 Mar;10(1):77-80. doi: 10.1055/s-0040-1709670. Epub 2020 Apr 23.
Stergachis AB, Krier JB, Merugumala SK, Berry GT, Lin AP. Clinical utility of brain MRS imaging of patients with adult-onset non-cirrhotic hyperammonemia. Mol Genet Metab Rep. 2021 Mar 13;27:100742. doi: 10.1016/j.ymgmr.2021.100742. eCollection 2021 Jun.
Murali CN, Barber JR, McCarter R, Zhang A, Gallant N, Simpson K, Dorrani N, Wilkening GN, Hays RD, Lichter-Konecki U; Members of the Urea Cycle Disorders Consortium; Burrage LC, Nagamani SCS. Health-related quality of life in a systematically assessed cohort of children and adults with urea cycle disorders. Mol Genet Metab. 2023 Nov;140(3):107696. doi: 10.1016/j.ymgme.2023.107696. Epub 2023 Sep 8.
Posset R, Zielonka M, Gleich F, Garbade SF, Hoffmann GF, Kolker S; Urea Cycle Disorders Consortium (UCDC) and European registry and network for Intoxication type Metabolic Diseases (E-IMD) Consortia Study Group. The challenge of understanding and predicting phenotypic diversity in urea cycle disorders. J Inherit Metab Dis. 2023 Nov;46(6):1007-1016. doi: 10.1002/jimd.12678. Epub 2023 Oct 10.
Tuchman M, Lee B, Lichter-Konecki U, Summar ML, Yudkoff M, Cederbaum SD, Kerr DS, Diaz GA, Seashore MR, Lee HS, McCarter RJ, Krischer JP, Batshaw ML; Additional members of Urea Cycle Disorders Consortium of the Rare Diseases Clinical Research Network. Cross-sectional multicenter study of patients with urea cycle disorders in the United States. Mol Genet Metab. 2008 Aug;94(4):397-402. doi: 10.1016/j.ymgme.2008.05.004. Epub 2008 Jun 17.
Krivitzky L, Babikian T, Lee HS, Thomas NH, Burk-Paull KL, Batshaw ML. Intellectual, adaptive, and behavioral functioning in children with urea cycle disorders. Pediatr Res. 2009 Jul;66(1):96-101. doi: 10.1203/PDR.0b013e3181a27a16.
Morgan TM, Schlegel C, Edwards KM, Welch-Burke T, Zhu Y, Sparks R, Summar M; Urea Cycle Disorders Consortium. Vaccines are not associated with metabolic events in children with urea cycle disorders. Pediatrics. 2011 May;127(5):e1147-53. doi: 10.1542/peds.2010-1628. Epub 2011 Apr 11.
Ah Mew N, Krivitzky L, McCarter R, Batshaw M, Tuchman M; Urea Cycle Disorders Consortium of the Rare Diseases Clinical Research Network. Clinical outcomes of neonatal onset proximal versus distal urea cycle disorders do not differ. J Pediatr. 2013 Feb;162(2):324-9.e1. doi: 10.1016/j.jpeds.2012.06.065. Epub 2012 Aug 15.
Seminara J, Tuchman M, Krivitzky L, Krischer J, Lee HS, Lemons C, Baumgartner M, Cederbaum S, Diaz GA, Feigenbaum A, Gallagher RC, Harding CO, Kerr DS, Lanpher B, Lee B, Lichter-Konecki U, McCandless SE, Merritt JL, Oster-Granite ML, Seashore MR, Stricker T, Summar M, Waisbren S, Yudkoff M, Batshaw ML. Establishing a consortium for the study of rare diseases: The Urea Cycle Disorders Consortium. Mol Genet Metab. 2010;100 Suppl 1(Suppl 1):S97-105. doi: 10.1016/j.ymgme.2010.01.014. Epub 2010 Feb 10.
Gallagher RC, Lam C, Wong D, Cederbaum S, Sokol RJ. Significant hepatic involvement in patients with ornithine transcarbamylase deficiency. J Pediatr. 2014 Apr;164(4):720-725.e6. doi: 10.1016/j.jpeds.2013.12.024. Epub 2014 Jan 30.
Batshaw ML, Tuchman M, Summar M, Seminara J; Members of the Urea Cycle Disorders Consortium. A longitudinal study of urea cycle disorders. Mol Genet Metab. 2014 Sep-Oct;113(1-2):127-30. doi: 10.1016/j.ymgme.2014.08.001. Epub 2014 Aug 10.
McGuire PJ, Lee HS; members of the Urea Cycle Disorders Consoritum; Summar ML. Infectious precipitants of acute hyperammonemia are associated with indicators of increased morbidity in patients with urea cycle disorders. J Pediatr. 2013 Dec;163(6):1705-1710.e1. doi: 10.1016/j.jpeds.2013.08.029. Epub 2013 Sep 29.
Waisbren SE, Gropman AL; Members of the Urea Cycle Disorders Consortium (UCDC); Batshaw ML. Improving long term outcomes in urea cycle disorders-report from the Urea Cycle Disorders Consortium. J Inherit Metab Dis. 2016 Jul;39(4):573-84. doi: 10.1007/s10545-016-9942-0. Epub 2016 May 23.
Related Links
Access external resources that provide additional context or updates about the study.
Urea Cycle Disorders Consortium website
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.