Risk Burden of Lipoprotein Metabolic Gene Haplotypes

NCT ID: NCT00090441

Last Updated: 2013-01-04

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

4303 participants

Study Classification

OBSERVATIONAL

Study Start Date

2004-08-31

Study Completion Date

2008-07-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

To investigate the role in coronary heart disease (CHD) of intragenic variation in a network of six genes affecting lipoprotein transport and metabolism.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

BACKGROUND:

In recent years, a number of candidate genetic variants (e.g., single nucleotide polymorphisms, SNPs) have been reported to be associated with coronary heart disease (CHD). However, these association studies have suffered from variability and failures of replication. This may result in part from selection of marker SNPs in linkage disequilibrium (LD) with true disease-related SNPs or with other effect-modulating genetic variants. Other issues include the play of chance in samples of limited size, population stratification artifacts, and small effect size for single SNPs. A recent discovery is that the genome is organized into largely invariant DNA fragments at the population level characterized by infrequent recombination events interspersed with "hotspots" of recombination and designated "haplotype blocks". These haplotype blocks can be determined by creating a dense map of SNPs across the gene of interest and analyzing population level LD. A few SNPs then can be chosen that designate ("tag") each haplotype block and used to comprehensively assess disease associations across the entire gene. Applying this approach to multiple genes in pathways critical to vascular health and assessing combinations of genes is likely to increase the power to discover genetic associations with CHD risk.

DESIGN NARRATIVE:

The study will establish high density SNP maps across exons, splice regions, and 5' and 3' regulatory regions of 6 genes that play key roles in lipoprotein transport and metabolism (ABCA1, CETP, LCAT, HL, LPL, SRB1); introns will be examined for 2 of the genes (CETP, LPL). By analyzing combinations of haplotype-tagging (ht) SNPs, "genetic burden" can be scored and correlated with CHD risk at 4 levels: 1) biomarker (lipid/lipoprotein levels), 2) anatomic (angiographic) CHD, 3) clinical outcome (death/MI), and 4) (exploratory) response to lipid-lowering. Testing will be performed in 3 large, distinct, but complementary Utah populations at primary or secondary risk of premature CHD. Testing will occur in 2 stages to establish reproducibility: an initial screening phase followed by a confirmation phase (for genetic markers and combinations showing promise) in a larger, independent sample. The study will employ novel methods that combine high-throughput SNP discovery and genotyping capability with genetic epidemiological methods to identify the haplotype blocks within and surrounding the genes of interest, identify htSNPs, and assess disease associations with individual and combinations of htSNPs ("genetic burden"). To this, the study brings large, well characterized databases, assembled and followed for up to 9 years, which will be further expanded under the current project.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Atherosclerosis Cardiovascular Diseases Coronary Disease Heart Diseases

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

CASE_CONTROL

Study Time Perspective

RETROSPECTIVE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

Men aged ≤60 years and women ≤70 years. Approximately 3,000 subjects (∼2,000 CAD cases and ∼1,000 angiographically normal controls, matched 2:1 for sex, age, and date of registry entry) were selected. A separate set of cases with highly familial premature CAD (first-degree relative with CHD onset \<55 in men, \<65 in women) from the University of Utah Cardiovascular Genetics Family Tree Registry and a separate set of controls (randomly invited from a public records database) were enrolled as a replication set.
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Heart, Lung, and Blood Institute (NHLBI)

NIH

Sponsor Role collaborator

Intermountain Health Care, Inc.

OTHER

Sponsor Role lead

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Jeffrey Anderson, MD

Role: PRINCIPAL_INVESTIGATOR

Intermountain Health Care; University of Utah School of Medicine

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

5R01HL071878-04

Identifier Type: NIH

Identifier Source: secondary_id

View Link

1265

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Epidemiology of Atherosclerosis
NCT00005147 COMPLETED