Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
OBSERVATIONAL
2003-01-31
2007-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Genetic and Environmental Determinants of Hypertension
NCT00005149
Urinary Kallikrein and Hypertension: A Prospective Study
NCT00005261
Mechanisms Underlying Abnormal Ambulatory BP Patterns
NCT00005346
Association Between Genetic Algorithm to Predict Hypertension Therapy and Response to Treatment
NCT03292900
Ambulatory Blood Pressure and Prognosis
NCT00005363
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Essential hypertension affects at least 25 percent of American adults, and it is a primary risk factor for heart failure, stroke, and kidney disease. Many, but not all, studies have shown that variants of the angiotensinogen gene (AGT) affect the risk of hypertension, but association studies conducted to date have been compromised by genetic heterogeneity and by the inherent complexity of hypertension as a phenotype.
DESIGN NARRATIVE:
A comprehensive study of the angiotensinogen (AGT) gene will be conducted in data collected from several large groups of individuals. The investigators will sequence or genotype a 14.4 kb region including AGT in more than 1,600 individuals sampled from populations throughout the world. This will permit them to explore fully the extent of allelic heterogeneity, haplotype variation, and potential for population stratification in the AGT gene. Approximately 600 of these individuals are clinically uncharacterized and will represent a broad range of worldwide human variation. Another 500 subjects are members of 40 Utah pedigrees that are part of the Centre d'Etude du Polymorphisme Humain (CEPH) collection. These unique families have been heavily characterized genetically, and they are now being phenotyped for variables that include anthropometrics, blood chemistries, blood pressure measures, and plasma and urinary angiotensinogen. They will address the issue of genetic heterogeneity by testing associations between multi-SNP AGT haplotypes, angiotensinogen levels, and blood pressure. In addition, linkage disequilibrium patterns will be assessed to determine the density and nature of SNPs best suited for localizing a gene underlying a complex trait. They will address the issue of phenotypic heterogeneity in hypertension by performing extensive SNP typing on a set of 400 hypertensives and 100 normotensives collected by Dr. Gordon Williams. These clinically well-characterized subjects have been tested for their response to infused angiotensin-II under high and low sodium intake. This direct probe provides a hypertension endophenotype that is closer to the function of the AGT gene, yielding a more realistic and informative assessment of the relationship between AGT haplotype variation and hypertension risk. A phylogenetic analysis of AGT sequence variation in the worldwide sample will help to assess population stratification in association studies. In addition, this sample will allow testing the hypothesis that the ancestral T235 AGT allele provided a selective advantage in the sodium-poor environment of sub-Saharan Africa. The results of this analysis may help to explain why African-Americans have elevated rates of hypertension. In summary, the extensive analysis of AGT variation in more than 1,600 subjects will clarify the role of this gene in essential hypertension and will test specific hypotheses about the evolution of AGT.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Heart, Lung, and Blood Institute (NHLBI)
NIH
University of Utah
OTHER
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Lynn Jorde
Role:
University of Utah
References
Explore related publications, articles, or registry entries linked to this study.
Nakajima T, Wooding S, Satta Y, Jinnai N, Goto S, Hayasaka I, Saitou N, Guan-Jun J, Tokunaga K, Jorde LB, Emi M, Inoue I. Evidence for natural selection in the HAVCR1 gene: high degree of amino-acid variability in the mucin domain of human HAVCR1 protein. Genes Immun. 2005 Aug;6(5):398-406. doi: 10.1038/sj.gene.6364215.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
1215
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.