Comparisons of NAD Precursors for Neuroenhancement in Glaucoma Patients
NCT ID: NCT06991712
Last Updated: 2025-06-26
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
PHASE2
138 participants
INTERVENTIONAL
2025-05-19
2026-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
1. Does daily oral administration of equimolar doses of nicotinamide riboside (NR), nicotinamide (NAM), nicotinamide mononucleotide (NMN), or nicotinic acid (NA) improve visual field sensitivity in glaucoma patients over the short term?
2. How do plasma NAD+ metabolite profiles change after administration of each precursor, and do these changes relate to improvements in visual function?
Researchers will compare NR, NAM, NMN, NA, and placebo groups to see if any of the NAD precursors lead to greater improvements in visual field sensitivity or changes in blood NAD+ metabolite levels compared to placebo.
Participants will:
Be randomly assigned to receive one of the four NAD precursors or placebo daily for two weeks.
Undergo comprehensive eye examinations, including visual field testing and optical coherence tomography, at baseline and after two weeks.
Provide blood samples before and after the intervention for measurement of NAD+ metabolites.
Have safety monitored through clinical examination.
This study will help identify whether boosting NAD+ levels with specific precursors offers functional benefit in glaucoma, and which blood metabolites may mediate these effects.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Nicotinamide and Glaucoma
NCT05916066
Nicotinamide and Pyruvate for Open Angle Glaucoma: A Randomized Clinical Study
NCT05695027
Vision Preservation and Restoration Following a 6 Month Trial of GlaucoCetin
NCT04784234
Efficacy of Nicotinamide on Retinal Ganglion Cell Functions in Glaucoma Patients
NCT06078605
Nicotinamide Levels in Serum, Aqueous Humor, and Tear Film in Glaucoma and Correlations With Mitochondrial Damage-Associated Molecular Patterns (mtDAMPs) and Senescence-Associated Secretory Phenotype (SASP)
NCT07006194
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Secondary objectives include comparing pattern electroretinogram nerve fiber layer thickness measurements before and after treatment and analyzing correlations between systemic NAD+ metabolite elevations and functional visual improvements. Blood samples undergo standardized processing with Lymphoprep separation, snap-freezing, and derivatization protocols prior to mass spectrometry analysis using Agilent and Thermo Fisher systems with predefined NAD+ metabolite inclusion lists.
Statistical analysis employs linear mixed models to compare within-group and between-group changes, with intention-to-treat principles. The study design addresses gaps in comparative NAD precursor bioavailability data by testing equimolar doses in a targeted glaucoma population, while maintaining double-blinding through computer-generated randomization and masked outcome assessment.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
QUADRUPLE
The subject will be unmasked as per of the request of Principal Investigator in case of serious adverse event or if emergency unblinding is deemed essential for clinical management. All instances of the unblinding will be documented in the study binder. Unmasked subject will exit from the study and resumes normal clinical management.
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Nicotinamide Riboside (Phase I)
Nicotinamide Riboside
Oral supplementation of 300mg Nicotinamide Riboside (NR) daily for 2 weeks
Nicotinamide (Phase I)
Nicotinamide
Oral supplementation of 125mg Nicotinamide/Niacinamide (NAM) daily for 2 weeks
Nicotinamide Mononucleotide (Phase II)
Nicotinamide Mononucleotide
Oral supplementation of 350mg Nicotinamide Mononucleotide (NMN) daily for 2 weeks
Nicotinic Acid (Phase II)
Nicotinic Acid
Oral supplementation of 350mg Nicotinic Acid (NA) daily for 2 weeks
Placebo (Phase I)
Placebo (Corn Starch)
Oral supplementation of 300mg Placebo daily for 2 weeks
Placebo (Phase II)
Placebo (Corn Starch)
Oral supplementation of 300mg Placebo daily for 2 weeks
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Nicotinamide Riboside
Oral supplementation of 300mg Nicotinamide Riboside (NR) daily for 2 weeks
Nicotinamide
Oral supplementation of 125mg Nicotinamide/Niacinamide (NAM) daily for 2 weeks
Nicotinamide Mononucleotide
Oral supplementation of 350mg Nicotinamide Mononucleotide (NMN) daily for 2 weeks
Nicotinic Acid
Oral supplementation of 350mg Nicotinic Acid (NA) daily for 2 weeks
Placebo (Corn Starch)
Oral supplementation of 300mg Placebo daily for 2 weeks
Placebo (Corn Starch)
Oral supplementation of 300mg Placebo daily for 2 weeks
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* age ≥ 18 years
* best corrected VA ≥20/40
* IOP \<21 mmHg
* visual field mean deviation better than -24 dB on standard automated perimetry 24-2 SITA standard
Exclusion Criteria
* diseases that may cause visual field loss or optic disc abnormalities other than glaucoma
* inability to perform reliable visual field
* suboptimal quality of OCT images
* diabetic retinopathy/maculopathy
* history of abnormal liver function within 12 months
* known allergy to NAD precursor supplement(s)
* pregnancy or lactation
* use of NAD precursor supplements 14 days prior to baseline.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Christopher Kai Shun Leung
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Christopher Kai Shun Leung
Chairperson and Clinical Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Christopher Kai-shun LEUNG, MD
Role: PRINCIPAL_INVESTIGATOR
The University of Hong Kong
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
HKU Eye Centre
Wong Chuk Hang, , Hong Kong
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Allison K, Patel D, Alabi O. Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. Cureus. 2020 Nov 24;12(11):e11686. doi: 10.7759/cureus.11686.
Bengtsson B, Lindgren A, Heijl A, Lindgren G, Asman P, Patella M. Perimetric probability maps to separate change caused by glaucoma from that caused by cataract. Acta Ophthalmol Scand. 1997 Apr;75(2):184-8. doi: 10.1111/j.1600-0420.1997.tb00121.x.
Bledi Petriti, Alessandro Rabiolo, Pete Williams, Kai-Yin Chau, Gerassimos Lascaratos, David F Garway-Heath; Primary open angle glaucoma patients have lower systemic mitochondrial function, associated with lower systemic nicotinamide adenine dinucleotide (NAD) levels, compared to Controls. Invest. Ophthalmol. Vis. Sci. 2023;64(8):483.
Bledi Petriti, Gerassimos Lascaratos, David Chau, Williams Peter, David F Garway-Heath; Preliminary data show Normal Tension Glaucoma patients have lower systemic nicotinamide adenine dinucleotide (NAD+) levels and mitochondrial function compared to Controls. Invest. Ophthalmol. Vis. Sci. 2021;62(8):1765.
Capuzzi DM, Guyton JR, Morgan JM, Goldberg AC, Kreisberg RA, Brusco OA, Brody J. Efficacy and safety of an extended-release niacin (Niaspan): a long-term study. Am J Cardiol. 1998 Dec 17;82(12A):74U-81U; discussion 85U-86U. doi: 10.1016/s0002-9149(98)00731-0.
Christopher Kai-Shun Leung, Philip Guo, Marco Yu, Gilda Lai; Nicotinamide Riboside for Progressing Glaucoma: A Double-blind, Parallel Group, Randomized, Placebo-controlled Trial - A Report on Neuroenhancement. Invest. Ophthalmol. Vis. Sci. 2023;64(8):4349.
Cros C, Cannelle H, Laganier L, Grozio A, Canault M. Safety evaluation after acute and sub-chronic oral administration of high purity nicotinamide mononucleotide (NMN-C(R)) in Sprague-Dawley rats. Food Chem Toxicol. 2021 Apr;150:112060. doi: 10.1016/j.fct.2021.112060. Epub 2021 Feb 12.
De Moraes CG, John SWM, Williams PA, Blumberg DM, Cioffi GA, Liebmann JM. Nicotinamide and Pyruvate for Neuroenhancement in Open-Angle Glaucoma: A Phase 2 Randomized Clinical Trial. JAMA Ophthalmol. 2022 Jan 1;140(1):11-18. doi: 10.1001/jamaophthalmol.2021.4576.
European Food Safety Authority. Tolerable Upper Intake Levels for Vitamins and Minerals (2006). Parma, Italy: European Food Safety Authority; 2006.
Medeiros FA, Zangwill LM, Bowd C, Mansouri K, Weinreb RN. The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. Invest Ophthalmol Vis Sci. 2012 Oct 5;53(11):6939-46. doi: 10.1167/iovs.12-10345.
Gardiner SK, Crabb DP. Frequency of testing for detecting visual field progression. Br J Ophthalmol. 2002 May;86(5):560-4. doi: 10.1136/bjo.86.5.560.
Garway-Heath DF, Crabb DP, Bunce C, Lascaratos G, Amalfitano F, Anand N, Azuara-Blanco A, Bourne RR, Broadway DC, Cunliffe IA, Diamond JP, Fraser SG, Ho TA, Martin KR, McNaught AI, Negi A, Patel K, Russell RA, Shah A, Spry PG, Suzuki K, White ET, Wormald RP, Xing W, Zeyen TG. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet. 2015 Apr 4;385(9975):1295-304. doi: 10.1016/S0140-6736(14)62111-5. Epub 2014 Dec 19.
GRAS No 635, available at https://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=635
Gupta D, Chen PP. Glaucoma. Am Fam Physician. 2016 Apr 15;93(8):668-74.
Harwerth RS, Carter-Dawson L, Shen F, Smith EL 3rd, Crawford ML. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci. 1999 Sep;40(10):2242-50.
Heijl A, Bengtsson B, Hyman L, Leske MC; Early Manifest Glaucoma Trial Group. Natural history of open-angle glaucoma. Ophthalmology. 2009 Dec;116(12):2271-6. doi: 10.1016/j.ophtha.2009.06.042. Epub 2009 Oct 24.
Hui F, Tang J, Williams PA, McGuinness MB, Hadoux X, Casson RJ, Coote M, Trounce IA, Martin KR, van Wijngaarden P, Crowston JG. Improvement in inner retinal function in glaucoma with nicotinamide (vitamin B3) supplementation: A crossover randomized clinical trial. Clin Exp Ophthalmol. 2020 Sep;48(7):903-914. doi: 10.1111/ceo.13818. Epub 2020 Jul 28.
Institute of Medicine (IOM, 1998). Niacin: In: Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B(6), Folate, Vitamin B(12), Pantothenic Acid, Biotin, and Choline. (National Academy of Sciences/NAS, Institute of Medicine/IOM, Food and Nutrition Board/FNB, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline, and the Subcommittee on Upper Reference Levels of Nutrients). Washington (DC): National Academy Press (NAP), pp. 123-149. Available at:http://www.nap.edu/openbook.php?record_id=6015&page=123
Ito, T. K., Sato, T., Hakamata, A., Onoda, Y., Sato, S., Yamazaki, F., Horikawa, M., Takahashi, Y., Kitamoto, T., Suzuki, M., Uchida, S., Odagiri, K., & Setou, M. (2020). A nonrandomized study of single oral supplementation within the daily tolerable upper level of nicotinamide affects blood nicotinamide and NAD+ levels in healthy subjects. Translational Medicine of Aging, 4, 45-54. https://doi.org/10.1016/j.tma.2020.04.002
Ito, Takashi & Sato, Tomohito & Takanashi, Yusuke & Tamannaa, Zinat & Kitamoto, Takuya & Odagiri, Keiichi & Setou, Mitsutoshi. (2021). A single oral supplementation of nicotinamide within the daily tolerable upper level increases blood NAD+ levels in healthy subjects. Translational Medicine of Aging. 5. 10.1016/j.tma.2021.09.001.
Jadeja RN, Thounaojam MC, Bartoli M, Martin PM. Implications of NAD+ Metabolism in the Aging Retina and Retinal Degeneration. Oxid Med Cell Longev. 2020 May 9;2020:2692794. doi: 10.1155/2020/2692794. eCollection 2020.
Kamanna VS, Ganji SH, Kashyap ML. The mechanism and mitigation of niacin-induced flushing. Int J Clin Pract. 2009 Sep;63(9):1369-77. doi: 10.1111/j.1742-1241.2009.02099.x.
Lautrup S, Sinclair DA, Mattson MP, Fang EF. NAD+ in Brain Aging and Neurodegenerative Disorders. Cell Metab. 2019 Oct 1;30(4):630-655. doi: 10.1016/j.cmet.2019.09.001.
Leung CKS, Ye C, Weinreb RN, Yu M, Lai G, Lam DS. Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression. Ophthalmology. 2013 Dec;120(12):2485-2492. doi: 10.1016/j.ophtha.2013.07.021. Epub 2013 Aug 30.
Lin C, Mak H, Yu M, Leung CK. Trend-Based Progression Analysis for Examination of the Topography of Rates of Retinal Nerve Fiber Layer Thinning in Glaucoma. JAMA Ophthalmol. 2017 Mar 1;135(3):189-195. doi: 10.1001/jamaophthalmol.2016.5111.
Lin JB, Kubota S, Ban N, Yoshida M, Santeford A, Sene A, Nakamura R, Zapata N, Kubota M, Tsubota K, Yoshino J, Imai SI, Apte RS. NAMPT-Mediated NAD(+) Biosynthesis Is Essential for Vision In Mice. Cell Rep. 2016 Sep 27;17(1):69-85. doi: 10.1016/j.celrep.2016.08.073.
Mahmoudinezhad G, Moghimi S, Proudfoot JA, Brye N, Nishida T, Yarmohammadi A, Kamalipour A, Zangwill LM, Weinreb RN. Effect of Testing Frequency on the Time to Detect Glaucoma Progression With Optical Coherence Tomography (OCT) and OCT Angiography. Am J Ophthalmol. 2023 Jan;245:184-192. doi: 10.1016/j.ajo.2022.08.030. Epub 2022 Sep 10.
Mehmel M, Jovanovic N, Spitz U. Nicotinamide Riboside-The Current State of Research and Therapeutic Uses. Nutrients. 2020 May 31;12(6):1616. doi: 10.3390/nu12061616.
Meyers CD, Carr MC, Park S, Brunzell JD. Varying cost and free nicotinic acid content in over-the-counter niacin preparations for dyslipidemia. Ann Intern Med. 2003 Dec 16;139(12):996-1002. doi: 10.7326/0003-4819-139-12-200312160-00009.
Morgan JM, Capuzzi DM, Guyton JR. A new extended-release niacin (Niaspan): efficacy, tolerability, and safety in hypercholesterolemic patients. Am J Cardiol. 1998 Dec 17;82(12A):29U-34U; discussion 39U-41U. doi: 10.1016/s0002-9149(98)00732-2.
Nouri-Mahdavi K, Nassiri N, Giangiacomo A, Caprioli J. Detection of visual field progression in glaucoma with standard achromatic perimetry: a review and practical implications. Graefes Arch Clin Exp Ophthalmol. 2011 Nov;249(11):1593-616. doi: 10.1007/s00417-011-1787-5. Epub 2011 Aug 26.
Norquist JM, Watson DJ, Yu Q, Paolini JF, McQuarrie K, Santanello NC. Validation of a questionnaire to assess niacin-induced cutaneous flushing. Curr Med Res Opin. 2007 Jul;23(7):1549-60. doi: 10.1185/030079907x199637.
Nouri-Mahdavi K, Hoffman D, Gaasterland D, Caprioli J. Prediction of visual field progression in glaucoma. Invest Ophthalmol Vis Sci. 2004 Dec;45(12):4346-51. doi: 10.1167/iovs.04-0204.
Okabe K, Yaku K, Uchida Y, Fukamizu Y, Sato T, Sakurai T, Tobe K, Nakagawa T. Oral Administration of Nicotinamide Mononucleotide Is Safe and Efficiently Increases Blood Nicotinamide Adenine Dinucleotide Levels in Healthy Subjects. Front Nutr. 2022 Apr 11;9:868640. doi: 10.3389/fnut.2022.868640. eCollection 2022.
Pardue MT, Allen RS. Neuroprotective strategies for retinal disease. Prog Retin Eye Res. 2018 Jul;65:50-76. doi: 10.1016/j.preteyeres.2018.02.002. Epub 2018 Feb 23.
Paolini JF, Mitchel YB, Reyes R, Thompson-Bell S, Yu Q, Lai E, Watson DJ, Norquist JM, Sisk CM, Bays HE. Measuring flushing symptoms with extended-release niacin using the flushing symptom questionnaire: results from a randomised placebo-controlled clinical trial. Int J Clin Pract. 2008 Jun;62(6):896-904. doi: 10.1111/j.1742-1241.2008.01739.x. Epub 2008 Apr 10.
Petriti B, Williams PA, Lascaratos G, Chau KY, Garway-Heath DF. Neuroprotection in Glaucoma: NAD+/NADH Redox State as a Potential Biomarker and Therapeutic Target. Cells. 2021 Jun 5;10(6):1402. doi: 10.3390/cells10061402.
Pirinen E, Auranen M, Khan NA, Brilhante V, Urho N, Pessia A, Hakkarainen A, Kuula J, Heinonen U, Schmidt MS, Haimilahti K, Piirila P, Lundbom N, Taskinen MR, Brenner C, Velagapudi V, Pietilainen KH, Suomalainen A. Niacin Cures Systemic NAD+ Deficiency and Improves Muscle Performance in Adult-Onset Mitochondrial Myopathy. Cell Metab. 2020 Jun 2;31(6):1078-1090.e5. doi: 10.1016/j.cmet.2020.04.008. Epub 2020 May 7.
Poljsak B, Kovac V, Milisav I. Current Uncertainties and Future Challenges Regarding NAD+ Boosting Strategies. Antioxidants (Basel). 2022 Aug 24;11(9):1637. doi: 10.3390/antiox11091637.
Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai S, Bass J. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009 May 1;324(5927):651-4. doi: 10.1126/science.1171641. Epub 2009 Mar 19.
Rajman L, Chwalek K, Sinclair DA. Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence. Cell Metab. 2018 Mar 6;27(3):529-547. doi: 10.1016/j.cmet.2018.02.011.
Shin JW, Sung KR, Lee J, Kwon J. Factors Associated With Visual Field Progression in Cirrus Optical Coherence Tomography-guided Progression Analysis: A Topographic Approach. J Glaucoma. 2017 Jun;26(6):555-560. doi: 10.1097/IJG.0000000000000680.
Sood A, Arora R. Mechanisms of flushing due to niacin and abolition of these effects. J Clin Hypertens (Greenwich). 2009 Nov;11(11):685-9. doi: 10.1111/j.1559-4572.2008.00050.x.
Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014 Nov;121(11):2081-90. doi: 10.1016/j.ophtha.2014.05.013. Epub 2014 Jun 26.
Trammell SA, Schmidt MS, Weidemann BJ, Redpath P, Jaksch F, Dellinger RW, Li Z, Abel ED, Migaud ME, Brenner C. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun. 2016 Oct 10;7:12948. doi: 10.1038/ncomms12948.
Tribble JR, Otmani A, Sun S, Ellis SA, Cimaglia G, Vohra R, Joe M, Lardner E, Venkataraman AP, Dominguez-Vicent A, Kokkali E, Rho S, Johannesson G, Burgess RW, Fuerst PG, Brautaset R, Kolko M, Morgan JE, Crowston JG, Votruba M, Williams PA. Nicotinamide provides neuroprotection in glaucoma by protecting against mitochondrial and metabolic dysfunction. Redox Biol. 2021 Jul;43:101988. doi: 10.1016/j.redox.2021.101988. Epub 2021 Apr 24.
Verdin E. NAD(+) in aging, metabolism, and neurodegeneration. Science. 2015 Dec 4;350(6265):1208-13. doi: 10.1126/science.aac4854.
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014 May 14;311(18):1901-11. doi: 10.1001/jama.2014.3192.
Williams PA, Harder JM, Foxworth NE, Cochran KE, Philip VM, Porciatti V, Smithies O, John SW. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017 Feb 17;355(6326):756-760. doi: 10.1126/science.aal0092.
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther. 2020 Oct 7;5(1):227. doi: 10.1038/s41392-020-00311-7.
Zapata-Perez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH. NAD+ homeostasis in human health and disease. EMBO Mol Med. 2021 Jul 7;13(7):e13943. doi: 10.15252/emmm.202113943. Epub 2021 May 27.
Zhang X, Zhang N, Chrenek MA, Girardot PE, Wang J, Sellers JT, Geisert EE, Brenner C, Nickerson JM, Boatright JH, Li Y. Systemic Treatment with Nicotinamide Riboside Is Protective in Two Mouse Models of Retinal Ganglion Cell Damage. Pharmaceutics. 2021 Jun 16;13(6):893. doi: 10.3390/pharmaceutics13060893.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
H029
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.