Screening for AL Amyloidosis in Smoldering Multiple Myeloma
NCT ID: NCT06365060
Last Updated: 2025-08-06
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
400 participants
OBSERVATIONAL
2024-05-01
2029-02-27
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
A Diagnostic Screening Trial Seeking AL Amyloidosis Very Early
NCT02741999
A Study to Investigate the Relationship Between Duration of Treatment and Response in Patients With Multiple Myeloma (MM) or Systemic AL Amyloidosis Treated in Real-life Practice
NCT04659798
Natural History Study of Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Myeloma (SMM)
NCT01109407
Geriatric Assessments in Senior Adults With Multiple Myeloma
NCT01746030
Evaluation of the Impact of the Update SMM Criteria on the Natural History of SMM to Establish New Recommendations.
NCT04144387
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* diagnosed with either Smoldering Multiple Myeloma or a Monoclonal Gammopathy
* dFLC greater than 23 mg/L
* abnormal FLC ratio
* If the patient has an eGFR less than 50 mL/min/1.73m2, the FLC ratio is inconsequential. The patient only needs to meet the age and dFLC criterion.
Exclusion Criteria
* Patients with a previous finding of amyloid in other biopsies will not be included
* Adults unable to consent are not eligible, including the cognitively impaired Pregnant women, pregnant minors, minors (i.e., individuals who are not yet adults), wards of the state, non-viable neonates, neonates of uncertain viability, and prisoners are not eligible
40 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Cancer Institute (NCI)
NIH
Tufts Medical Center
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Alabama Hospital
Birmingham, Alabama, United States
Cedars-Sinai Medical Center
Los Angeles, California, United States
University of California, San Francisco
San Francisco, California, United States
Cleveland Clinic Florida, Weston Hospital
Weston, Florida, United States
Tufts Medical Center
Boston, Massachusetts, United States
Columbia University Irving Medical Center
New York, New York, United States
Memorial Sloan Kettering Cancer Center
New York, New York, United States
Atrium Health Levine Cancer Institute
Charlotte, North Carolina, United States
UNC Lineberger Comprehensive Cancer Center
Durham, North Carolina, United States
The Ohio State University Comprehensive Cancer Center
Columbus, Ohio, United States
UT Southwestern, Harold C. Simmons Comprehensive Cancer Center
Dallas, Texas, United States
University of Utah, Huntsman Cancer Hospital
Salt Lake City, Utah, United States
VCU Medical Center
Richmond, Virginia, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Avalos M, Pouyes H, Grandvalet Y, Orriols L, Lagarde E. Sparse conditional logistic regression for analyzing large-scale matched data from epidemiological studies: a simple algorithm. BMC Bioinformatics. 2015;16 Suppl 6(Suppl 6):S1. doi: 10.1186/1471-2105-16-S6-S1. Epub 2015 Apr 17.
Bodi K, Prokaeva T, Spencer B, Eberhard M, Connors LH, Seldin DC. AL-Base: a visual platform analysis tool for the study of amyloidogenic immunoglobulin light chain sequences. Amyloid. 2009 Mar;16(1):1-8. doi: 10.1080/13506120802676781.
Bujang MA, Adnan TH. Requirements for Minimum Sample Size for Sensitivity and Specificity Analysis. J Clin Diagn Res. 2016 Oct;10(10):YE01-YE06. doi: 10.7860/JCDR/2016/18129.8744. Epub 2016 Oct 1.
Comenzo RL, Wally J, Kica G, Murray J, Ericsson T, Skinner M, Zhang Y. Clonal immunoglobulin light chain variable region germline gene use in AL amyloidosis: association with dominant amyloid-related organ involvement and survival after stem cell transplantation. Br J Haematol. 1999 Sep;106(3):744-51. doi: 10.1046/j.1365-2141.1999.01591.x.
Comenzo RL, Zhang Y, Martinez C, Osman K, Herrera GA. The tropism of organ involvement in primary systemic amyloidosis: contributions of Ig V(L) germ line gene use and clonal plasma cell burden. Blood. 2001 Aug 1;98(3):714-20. doi: 10.1182/blood.v98.3.714.
Chaulagain CP, Comenzo RL. How we treat systemic light-chain amyloidosis. Clin Adv Hematol Oncol. 2015 May;13(5):315-24.
Dasari S, Theis JD, Vrana JA, Meureta OM, Quint PS, Muppa P, Zenka RM, Tschumper RC, Jelinek DF, Davila JI, Sarangi V, Kurtin PJ, Dogan A. Proteomic detection of immunoglobulin light chain variable region peptides from amyloidosis patient biopsies. J Proteome Res. 2015 Apr 3;14(4):1957-67. doi: 10.1021/acs.jproteome.5b00015. Epub 2015 Mar 20.
Dispenzieri A, Kyle RA, Katzmann JA, Therneau TM, Larson D, Benson J, Clark RJ, Melton LJ 3rd, Gertz MA, Kumar SK, Fonseca R, Jelinek DF, Rajkumar SV. Immunoglobulin free light chain ratio is an independent risk factor for progression of smoldering (asymptomatic) multiple myeloma. Blood. 2008 Jan 15;111(2):785-9. doi: 10.1182/blood-2007-08-108357. Epub 2007 Oct 17.
Dubrey SW, Cha K, Anderson J, Chamarthi B, Reisinger J, Skinner M, Falk RH. The clinical features of immunoglobulin light-chain (AL) amyloidosis with heart involvement. QJM. 1998 Feb;91(2):141-57. doi: 10.1093/qjmed/91.2.141.
Kourelis TV, Kumar SK, Go RS, Kapoor P, Kyle RA, Buadi FK, Gertz MA, Lacy MQ, Hayman SR, Leung N, Dingli D, Lust JA, Lin Y, Zeldenrust SR, Rajkumar SV, Dispenzieri A. Immunoglobulin light chain amyloidosis is diagnosed late in patients with preexisting plasma cell dyscrasias. Am J Hematol. 2014 Nov;89(11):1051-4. doi: 10.1002/ajh.23827. Epub 2014 Sep 2.
Kyle RA, Rajkumar SV. Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Curr Hematol Malig Rep. 2010 Apr;5(2):62-9. doi: 10.1007/s11899-010-0047-9.
Kyle RA, Remstein ED, Therneau TM, Dispenzieri A, Kurtin PJ, Hodnefield JM, Larson DR, Plevak MF, Jelinek DF, Fonseca R, Melton LJ 3rd, Rajkumar SV. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med. 2007 Jun 21;356(25):2582-90. doi: 10.1056/NEJMoa070389.
Larsen JT, Kumar SK, Dispenzieri A, Kyle RA, Katzmann JA, Rajkumar SV. Serum free light chain ratio as a biomarker for high-risk smoldering multiple myeloma. Leukemia. 2013 Apr;27(4):941-6. doi: 10.1038/leu.2012.296. Epub 2012 Oct 16.
Perfetti V, Casarini S, Palladini G, Vignarelli MC, Klersy C, Diegoli M, Ascari E, Merlini G. Analysis of V(lambda)-J(lambda) expression in plasma cells from primary (AL) amyloidosis and normal bone marrow identifies 3r (lambdaIII) as a new amyloid-associated germline gene segment. Blood. 2002 Aug 1;100(3):948-53. doi: 10.1182/blood-2002-01-0114.
Perfetti V, Palladini G, Casarini S, Navazza V, Rognoni P, Obici L, Invernizzi R, Perlini S, Klersy C, Merlini G. The repertoire of lambda light chains causing predominant amyloid heart involvement and identification of a preferentially involved germline gene, IGLV1-44. Blood. 2012 Jan 5;119(1):144-50. doi: 10.1182/blood-2011-05-355784. Epub 2011 Nov 8.
Rajkumar SV, Kyle RA, Therneau TM, Melton LJ 3rd, Bradwell AR, Clark RJ, Larson DR, Plevak MF, Dispenzieri A, Katzmann JA. Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. Blood. 2005 Aug 1;106(3):812-7. doi: 10.1182/blood-2005-03-1038. Epub 2005 Apr 26.
Tahir UA, Doros G, Kim JS, Connors LH, Seldin DC, Sam F. Predictors of Mortality in Light Chain Cardiac Amyloidosis with Heart Failure. Sci Rep. 2019 Jun 12;9(1):8552. doi: 10.1038/s41598-019-44912-x.
Zhou P, Comenzo RL, Olshen AB, Bonvini E, Koenig S, Maslak PG, Fleisher M, Hoffman J, Jhanwar S, Young JW, Nimer SD, Boruchov AM. CD32B is highly expressed on clonal plasma cells from patients with systemic light-chain amyloidosis and provides a target for monoclonal antibody-based therapy. Blood. 2008 Apr 1;111(7):3403-6. doi: 10.1182/blood-2007-11-125526. Epub 2008 Jan 23.
Zhou P, Hoffman J, Landau H, Hassoun H, Iyer L, Comenzo RL. Clonal plasma cell pathophysiology and clinical features of disease are linked to clonal plasma cell expression of cyclin D1 in systemic light-chain amyloidosis. Clin Lymphoma Myeloma Leuk. 2012 Feb;12(1):49-58. doi: 10.1016/j.clml.2011.09.217. Epub 2011 Nov 18.
Zhou P, Ma X, Iyer L, Chaulagain C, Comenzo RL. One siRNA pool targeting the lambda constant region stops lambda light-chain production and causes terminal endoplasmic reticulum stress. Blood. 2014 May 29;123(22):3440-51. doi: 10.1182/blood-2013-10-535187. Epub 2014 Apr 10.
Hutchison CA, Harding S, Hewins P, Mead GP, Townsend J, Bradwell AR, Cockwell P. Quantitative assessment of serum and urinary polyclonal free light chains in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2008 Nov;3(6):1684-90. doi: 10.2215/CJN.02290508.
Singh G. Serum Free Light Chain Assay and kappa/lambda Ratio Performance in Patients Without Monoclonal Gammopathies: High False-Positive Rate. Am J Clin Pathol. 2016 Aug;146(2):207-14. doi: 10.1093/ajcp/aqw099.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
00003143
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.