Precision Imaging for Early Detection and Targeted Treatment Monitoring in Pancreatic Cancer
NCT ID: NCT06144762
Last Updated: 2025-02-12
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
150 participants
INTERVENTIONAL
2023-12-19
2029-10-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Early Screening of Pancreatic Lesions : Development of New Imaging Tools
NCT04007640
A Prospective Study of Liquid Biopsy for Pancreatic Cancer Early Detection
NCT06166147
68Ga-FAPI-46 in Staging of Pancreatic Adenocarcinoma
NCT06911021
Evaluation of the Stereotactic MR-guided Adaptive Radiotherapy for Locally Advanced Pancreatic Cancers
NCT07097064
Identification of Biomarkers Associated With the Presence of Malignant Pancreatic Lesions Compared to Benign Lesions.
NCT06397846
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
OTHER
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Blood sample and tissue sample
Blood sample and tissue sample
Biological/Vaccine: Blood sample and tissue sample
During the surgery :
Tissus sample : primary tumor and metastasis blood sample : 3 EDTA tubes ex vivo MRI data
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Biological/Vaccine: Blood sample and tissue sample
During the surgery :
Tissus sample : primary tumor and metastasis blood sample : 3 EDTA tubes ex vivo MRI data
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Pathologically proven pancreatic cancer which can beneficiate of upfront surgery or delayed surgery followed by neoadjuvant chemotherapy.
* Negative pregnancy test for women of childbearing potential
* Patients affiliated to a social protection system
* Written informed consent signed before project onset.
Exclusion Criteria
* Patient who will not have surgery
* Pregnant or breastfeeding women
* Mental or psychological state, physical or legal incapacity preventing participation in the project.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Institut du Cancer de Montpellier - Val d'Aurelle
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
NOUGARET Stephanie
Role: STUDY_DIRECTOR
INSTITUT REGIONAL DU CANCER DE MONTPELLIER Cancer de Montpellier
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
NOUGARET Stephanie
Montpellier, , France
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Nougaret S, Lakhman Y, Gourgou S, Kubik-Huch R, Derchi L, Sala E, Forstner R; European Society of Radiology (ESR) and the European Society of Urogenital Radiology (ESUR). MRI in female pelvis: an ESUR/ESR survey. Insights Imaging. 2022 Mar 28;13(1):60. doi: 10.1186/s13244-021-01152-w.
Soyer P, Revel MP, Dohan A, Vernhet-Kovacsik H, Nougaret S, Hoeffel C. Gender diversity in authorship in Diagnostic & Interventional Imaging: Where are we now? Diagn Interv Imaging. 2022 May;103(5):237-239. doi: 10.1016/j.diii.2022.02.001. Epub 2022 Feb 17. No abstract available.
Tardieu M, Lakhman Y, Khellaf L, Cardoso M, Sgarbura O, Colombo PE, Crispin-Ortuzar M, Sala E, Goze-Bac C, Nougaret S. Assessing Histology Structures by Ex Vivo MR Microscopy and Exploring the Link Between MRM-Derived Radiomic Features and Histopathology in Ovarian Cancer. Front Oncol. 2022 Jan 19;11:771848. doi: 10.3389/fonc.2021.771848. eCollection 2021.
Sadowski EA, Thomassin-Naggara I, Rockall A, Maturen KE, Forstner R, Jha P, Nougaret S, Siegelman ES, Reinhold C. O-RADS MRI Risk Stratification System: Guide for Assessing Adnexal Lesions from the ACR O-RADS Committee. Radiology. 2022 Apr;303(1):35-47. doi: 10.1148/radiol.204371. Epub 2022 Jan 18.
Shinagare AB, Sadowski EA, Park H, Brook OR, Forstner R, Wallace SK, Horowitz JM, Horowitz N, Javitt M, Jha P, Kido A, Lakhman Y, Lee SI, Manganaro L, Maturen KE, Nougaret S, Poder L, Rauch GM, Reinhold C, Sala E, Thomassin-Naggara I, Vargas HA, Venkatesan A, Nikolic O, Rockall AG. Ovarian cancer reporting lexicon for computed tomography (CT) and magnetic resonance (MR) imaging developed by the SAR Uterine and Ovarian Cancer Disease-Focused Panel and the ESUR Female Pelvic Imaging Working Group. Eur Radiol. 2022 May;32(5):3220-3235. doi: 10.1007/s00330-021-08390-y. Epub 2021 Nov 30.
Tibermacine H, Rouanet P, Sbarra M, Forghani R, Reinhold C, Nougaret S; GRECCAR Study Group. Radiomics modelling in rectal cancer to predict disease-free survival: evaluation of different approaches. Br J Surg. 2021 Oct 23;108(10):1243-1250. doi: 10.1093/bjs/znab191.
Nougaret S, Vargas HA, Sala E. BJR female genitourinary oncology special feature: introductory editorial. Br J Radiol. 2021 Sep 1;94(1125):20219003. doi: 10.1259/bjr.20219003. No abstract available.
Rouanet P, Rullier E, Lelong B, Maingon P, Tuech JJ, Pezet D, Castan F, Nougaret S; GRECCAR Study Group*. Tailored Strategy for Locally Advanced Rectal Carcinoma (GRECCAR 4): Long-term Results From a Multicenter, Randomized, Open-Label, Phase II Trial. Dis Colon Rectum. 2022 Aug 1;65(8):986-995. doi: 10.1097/DCR.0000000000002153. Epub 2022 Jul 5.
Nougaret S, Tibermacine H, Tardieu M, Sala E. Radiomics: an Introductory Guide to What It May Foretell. Curr Oncol Rep. 2019 Jun 25;21(8):70. doi: 10.1007/s11912-019-0815-1.
Weigelt B, Vargas HA, Selenica P, Geyer FC, Mazaheri Y, Blecua P, Conlon N, Hoang LN, Jungbluth AA, Snyder A, Ng CKY, Papanastasiou AD, Sosa RE, Soslow RA, Chi DS, Gardner GJ, Shen R, Reis-Filho JS, Sala E. Radiogenomics Analysis of Intratumor Heterogeneity in a Patient With High-Grade Serous Ovarian Cancer. JCO Precis Oncol. 2019 Jun 6;3:PO.18.00410. doi: 10.1200/PO.18.00410. eCollection 2019. No abstract available.
Dextraze K, Saha A, Kim D, Narang S, Lehrer M, Rao A, Narang S, Rao D, Ahmed S, Madhugiri V, Fuller CD, Kim MM, Krishnan S, Rao G, Rao A. Spatial habitats from multiparametric MR imaging are associated with signaling pathway activities and survival in glioblastoma. Oncotarget. 2017 Dec 5;8(68):112992-113001. doi: 10.18632/oncotarget.22947. eCollection 2017 Dec 22.
Chu LC, Park S, Kawamoto S, Fouladi DF, Shayesteh S, Zinreich ES, Graves JS, Horton KM, Hruban RH, Yuille AL, Kinzler KW, Vogelstein B, Fishman EK. Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal Adenocarcinoma From Normal Pancreatic Tissue. AJR Am J Roentgenol. 2019 Aug;213(2):349-357. doi: 10.2214/AJR.18.20901. Epub 2019 Apr 23.
Zhang Z, Li S, Wang Z, Lu Y. A Novel and Efficient Tumor Detection Framework for Pancreatic Cancer via CT Images. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1160-1164. doi: 10.1109/EMBC44109.2020.9176172.
Chu LC, Park S, Kawamoto S, Wang Y, Zhou Y, Shen W, Zhu Z, Xia Y, Xie L, Liu F, Yu Q, Fouladi DF, Shayesteh S, Zinreich E, Graves JS, Horton KM, Yuille AL, Hruban RH, Kinzler KW, Vogelstein B, Fishman EK. Application of Deep Learning to Pancreatic Cancer Detection: Lessons Learned From Our Initial Experience. J Am Coll Radiol. 2019 Sep;16(9 Pt B):1338-1342. doi: 10.1016/j.jacr.2019.05.034. No abstract available.
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016 Feb;278(2):563-77. doi: 10.1148/radiol.2015151169. Epub 2015 Nov 18.
Himoto Y, Veeraraghavan H, Zheng J, Zamarin D, Snyder A, Capanu M, Nougaret S, Vargas HA, Shitano F, Callahan M, Wang W, Sala E, Lakhman Y. Computed Tomography-Derived Radiomic Metrics Can Identify Responders to Immunotherapy in Ovarian Cancer. JCO Precis Oncol. 2019 Aug 15;3:PO.19.00038. doi: 10.1200/PO.19.00038. eCollection 2019.
Meier A, Veeraraghavan H, Nougaret S, Lakhman Y, Sosa R, Soslow RA, Sutton EJ, Hricak H, Sala E, Vargas HA. Association between CT-texture-derived tumor heterogeneity, outcomes, and BRCA mutation status in patients with high-grade serous ovarian cancer. Abdom Radiol (NY). 2019 Jun;44(6):2040-2047. doi: 10.1007/s00261-018-1840-5.
Vargas HA, Veeraraghavan H, Micco M, Nougaret S, Lakhman Y, Meier AA, Sosa R, Soslow RA, Levine DA, Weigelt B, Aghajanian C, Hricak H, Deasy J, Snyder A, Sala E. A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome. Eur Radiol. 2017 Sep;27(9):3991-4001. doi: 10.1007/s00330-017-4779-y. Epub 2017 Mar 13.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
PROICM 2023-03 PAN
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.