A Prospective Study on the Role of Karl Storz Curved and Straight Fetoscopes (11508AAK and 11506AAK) for Fetoscopic Intrauterine Procedures
NCT ID: NCT06056635
Last Updated: 2024-09-25
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
50 participants
INTERVENTIONAL
2024-08-15
2027-05-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
The Use of Karl Storz Curved Fetoscope (11508aak) and Its Straight Version (11506akk) for In-utero Surgery
NCT06425471
The Efficacy of the KARL STORZ Curved Fetoscope and Straight Fetoscope for Laser Photocoagulation of Placental Anastomoses
NCT06084247
Use of New Generation Fetoscopes in Pregnancies Affected by Fetal Diseases Amenable to Fetoscopy Therapy
NCT06281730
Uterine Artery Doppler Flow Velocimetry Parameters for Predicting the Occurrence of Persistent Gestational Trophoblastic Neoplasia After Evacuation of Complete Hydatiform Mole
NCT07333326
Laparotomy Versus Percutaneous Endoscopic Correction of Myelomeningocele
NCT03856034
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Improvements in the technique, experience and equipment have been associated with better maternal, fetal, and neonatal outcomes in fetal surgery. Smaller fetoscopes are associated with lower rates of premature delivery following FLP. New fetoscopes (11508AAK and 11506AAK) have the potential to improve visualization and the photocoagulation angle. Compared to alternative scopes, these Storz scopes provide a wider angle of view and are longer, enabling better reach to distant areas at the edge of the placenta, especially in cases of higher BMI, higher gestational age, and significant polyhydramnios.
This study is an un-blinded, non-randomized, single arm, feasibility study on a convenience cohort to demonstrate the role of a curved fetoscope device (11508AAK) or straight fetoscope device (11506AAK) among in-utero surgeries. Patients will be enrolled in a consecutive manner and all qualifying, patients who agreed to the use of the curved or straight fetoscopes will be enrolled in the study. Outcome data will be reported as a descriptive statistical analysis. The curved fetoscope (11508AAK) device will be used in monochorionic pregnancies with an anterior placenta requiring in-utero surgery, while the straight fetoscope (11506AAK) will be used in monochorionic pregnancies with a posterior placenta. This device is classified as a significant risk device because it is of substantial importance in diagnosing, curing, mitigating, or treating disease, or otherwise preventing impairment of human health and presents a potential for serious risk to the health, safety, or welfare of a subject.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Karl Storz Curved or Straight Scope
A Karl Storz Curved (11508AAK) or Straight (11506AAK) Fetoscope will be used to provide visualization during in-utero (in the womb) diagnostic and interventional procedures. The curved scope will be used in patients with a placenta that sits at the front of their uterus. The straight scope will be used in patients with a placenta that sits at the back of their uterus.
Karl Storz Curved Scope
The curved fetoscope (11508AAK) will be used to view target areas during in-utero procedures for patients with a placenta that sits at the front of the uterus. There are various fetal conditions that may require use of a fetoscope during minimally invasive surgery. These include the need to seal vessels in order to stop blood flow going in a specific direction during pregnancy, abnormal vessels that may need to be sealed, or to break down scar tissue, extra tissue attachments, or blockages.
Karl Storz Straight Scope
The straight fetoscope (11506AAK) will be used to view target areas during in-utero procedures for patients with a placenta that sits at the back of the uterus. There are various fetal conditions that may require use of a fetoscope during minimally invasive surgery. These include the need to seal vessels in order to stop blood flow going in a specific direction during pregnancy, abnormal vessels that may need to be sealed, or to break down scar tissue, extra tissue attachments, or blockages.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Karl Storz Curved Scope
The curved fetoscope (11508AAK) will be used to view target areas during in-utero procedures for patients with a placenta that sits at the front of the uterus. There are various fetal conditions that may require use of a fetoscope during minimally invasive surgery. These include the need to seal vessels in order to stop blood flow going in a specific direction during pregnancy, abnormal vessels that may need to be sealed, or to break down scar tissue, extra tissue attachments, or blockages.
Karl Storz Straight Scope
The straight fetoscope (11506AAK) will be used to view target areas during in-utero procedures for patients with a placenta that sits at the back of the uterus. There are various fetal conditions that may require use of a fetoscope during minimally invasive surgery. These include the need to seal vessels in order to stop blood flow going in a specific direction during pregnancy, abnormal vessels that may need to be sealed, or to break down scar tissue, extra tissue attachments, or blockages.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patient must be eligible for anesthesia
* Patient and father of the fetus (if available) are able to provide signed informed consent
Exclusion Criteria
* Preterm labor, preeclampsia, or uterine anomaly (e.g., large fibroid tumor) in the index pregnancy
* Suspicion of major recognized congenital syndrome on ultrasound or MRI that is not compatible with postnatal life
* Pre-pregnancy maternal BMI greater than 40
* High risk for fetal hemophilia
* Fetal aneuploidy or variants of known significance if an amniocentesis was performed
* Contraindication to abdominal surgery or fetoscopic surgery
18 Years
45 Years
FEMALE
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Boston Children's Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Eyal Krispin
Attending Physician, Maternal Fetal Care Center
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Eyal Krispin, MD
Role: PRINCIPAL_INVESTIGATOR
Fetal Surgeon
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Boston Children's Hospital
Boston, Massachusetts, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Petersen SG, Gibbons KS, Luks FI, Lewi L, Diemert A, Hecher K, Dickinson JE, Stirnemann JJ, Ville Y, Devlieger R, Gardener G, Deprest JA. The Impact of Entry Technique and Access Diameter on Prelabour Rupture of Membranes Following Primary Fetoscopic Laser Treatment for Twin-Twin Transfusion Syndrome. Fetal Diagn Ther. 2016;40(2):100-9. doi: 10.1159/000441915. Epub 2016 Apr 14.
Papanna R, Block-Abraham D, Mann LK, Buhimschi IA, Bebbington M, Garcia E, Kahlek N, Harman C, Johnson A, Baschat A, Moise KJ Jr. Risk factors associated with preterm delivery after fetoscopic laser ablation for twin-twin transfusion syndrome. Ultrasound Obstet Gynecol. 2014 Jan;43(1):48-53. doi: 10.1002/uog.13206.
Diehl W, Diemert A, Grasso D, Sehner S, Wegscheider K, Hecher K. Fetoscopic laser coagulation in 1020 pregnancies with twin-twin transfusion syndrome demonstrates improvement in double-twin survival rate. Ultrasound Obstet Gynecol. 2017 Dec;50(6):728-735. doi: 10.1002/uog.17520.
Senat MV, Deprest J, Boulvain M, Paupe A, Winer N, Ville Y. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med. 2004 Jul 8;351(2):136-44. doi: 10.1056/NEJMoa032597. Epub 2004 Jul 6.
Deprest JA, Van Schoubroeck D, Van Ballaer PP, Flageole H, Van Assche FA, Vandenberghe K. Alternative technique for Nd: YAG laser coagulation in twin-to-twin transfusion syndrome with anterior placenta. Ultrasound Obstet Gynecol. 1998 May;11(5):347-52. doi: 10.1046/j.1469-0705.1998.11050347.x.
Middeldorp JM, Lopriore E, Sueters M, Klumper FJ, Kanhai HH, Vandenbussche FP, Oepkes D. Twin-to-twin transfusion syndrome after 26 weeks of gestation: is there a role for fetoscopic laser surgery? BJOG. 2007 Jun;114(6):694-8. doi: 10.1111/j.1471-0528.2007.01337.x.
Shamshirsaz AA, Javadian P, Ruano R, Haeri S, Sangi-Haghpeykar H, Lee TC, Molohon J, Cass DL, Salmanian B, Mollett L, Moaddab A, Espinosa J, Olutoye OO, Belfort MA. Comparison between laparoscopically assisted and standard fetoscopic laser ablation in patients with anterior and posterior placentation in twin-twin transfusion syndrome: a single center study. Prenat Diagn. 2015 Apr;35(4):376-81. doi: 10.1002/pd.4552. Epub 2015 Mar 1.
Krispin E, Nassr AA, Espinoza J, Donepudi R, Sun RC, Sanz-Cortes M, Mostafaei S, Belfort MA, Shamshirsaz AA. Outcomes of laparoscopy-assisted fetoscopic laser photocoagulation for twin-twin transfusion syndrome: An established alternative for inaccessible anterior placenta. Prenat Diagn. 2021 Nov;41(12):1582-1588. doi: 10.1002/pd.5955. Epub 2021 Oct 17.
Jarboe MD, Berman DR, Wright T, Treadwell MC, Mychaliska GB. Novel Application of Laparoscopic Ultrasound for Fetoscopic Laser Ablation in Twin-Twin Transfusion Syndrome with Complete Anterior Placenta. Fetal Diagn Ther. 2017;41(1):71-75. doi: 10.1159/000439526. Epub 2015 Nov 11.
Quintero RA, Chmait RH, Bornick PW, Kontopoulos EV. Trocar-assisted selective laser photocoagulation of communicating vessels: a technique for the laser treatment of patients with twin-twin transfusion syndrome with inaccessible anterior placentas. J Matern Fetal Neonatal Med. 2010 Apr;23(4):330-4. doi: 10.3109/14767050903177177.
Quintero RA, Bornick PW, Allen MH, Johson PK. Selective laser photocoagulation of communicating vessels in severe twin-twin transfusion syndrome in women with an anterior placenta. Obstet Gynecol. 2001 Mar;97(3):477-81. doi: 10.1016/s0029-7844(00)01172-8.
Huber A, Baschat AA, Bregenzer T, Diemert A, Tchirikov M, Hackeloer BJ, Hecher K. Laser coagulation of placental anastomoses with a 30 degrees fetoscope in severe mid-trimester twin-twin transfusion syndrome with anterior placenta. Ultrasound Obstet Gynecol. 2008 Apr;31(4):412-6. doi: 10.1002/uog.5283.
Van Der Veeken L, Couck I, Van Der Merwe J, De Catte L, Devlieger R, Deprest J, Lewi L. Laser for twin-to-twin transfusion syndrome: a guide for endoscopic surgeons. Facts Views Vis Obgyn. 2019 Sep;11(3):197-205.
Tollenaar LSA, Slaghekke F, Lewi L, Colmant C, Lanna M, Weingertner AS, Ryan G, Arevalo S, Klaritsch P, Tavares de Sousa M, Khalil A, Papanna R, Gardener GJ, Bevilacqua E, Kostyukov KV, Bahtiyar MO, Kilby MD, Tiblad E, Oepkes D, Lopriore E. Spontaneous twin anemia polycythemia sequence: diagnosis, management, and outcome in an international cohort of 249 cases. Am J Obstet Gynecol. 2021 Feb;224(2):213.e1-213.e11. doi: 10.1016/j.ajog.2020.07.041. Epub 2020 Jul 27.
Tollenaar LSA, Lopriore E, Faiola S, Lanna M, Stirnemann J, Ville Y, Lewi L, Devlieger R, Weingertner AS, Favre R, Hobson SR, Ryan G, Rodo C, Arevalo S, Klaritsch P, Greimel P, Hecher K, de Sousa MT, Khalil A, Thilaganathan B, Bergh EP, Papanna R, Gardener GJ, Carlin A, Bevilacqua E, Sakalo VA, Kostyukov KV, Bahtiyar MO, Wilpers A, Kilby MD, Tiblad E, Oepkes D, Middeldorp JM, Haak MC, Klumper FJCM, Akkermans J, Slaghekke F. Post-Laser Twin Anemia Polycythemia Sequence: Diagnosis, Management, and Outcome in an International Cohort of 164 Cases. J Clin Med. 2020 Jun 5;9(6):1759. doi: 10.3390/jcm9061759.
Tollenaar LSA, Slaghekke F, Lewi L, Ville Y, Lanna M, Weingertner A, Ryan G, Arevalo S, Khalil A, Brock CO, Klaritsch P, Hecher K, Gardener G, Bevilacqua E, Kostyukov KV, Bahtiyar MO, Kilby MD, Tiblad E, Oepkes D, Lopriore E; Collaborators. Treatment and outcome of 370 cases with spontaneous or post-laser twin anemia-polycythemia sequence managed in 17 fetal therapy centers. Ultrasound Obstet Gynecol. 2020 Sep;56(3):378-387. doi: 10.1002/uog.22042.
Gratacos E, Lewi L, Munoz B, Acosta-Rojas R, Hernandez-Andrade E, Martinez JM, Carreras E, Deprest J. A classification system for selective intrauterine growth restriction in monochorionic pregnancies according to umbilical artery Doppler flow in the smaller twin. Ultrasound Obstet Gynecol. 2007 Jul;30(1):28-34. doi: 10.1002/uog.4046.
Zhao D, Lipa M, Wielgos M, Cohen D, Middeldorp JM, Oepkes D, Lopriore E. Comparison Between Monochorionic and Dichorionic Placentas With Special Attention to Vascular Anastomoses and Placental Share. Twin Res Hum Genet. 2016 Jun;19(3):191-6. doi: 10.1017/thg.2016.19. Epub 2016 Apr 12.
Zhao DP, de Villiers SF, Slaghekke F, Walther FJ, Middeldorp JM, Oepkes D, Lopriore E. Prevalence, size, number and localization of vascular anastomoses in monochorionic placentas. Placenta. 2013 Jul;34(7):589-93. doi: 10.1016/j.placenta.2013.04.005. Epub 2013 Apr 29.
Mendez-Figueroa H, Papanna R, Popek EJ, Byrd RH, Goldaber K, Moise KJ Jr, Johnson A. Endoscopic laser coagulation following amnioreduction for the management of a large placental chorioangioma. Prenat Diagn. 2009 Dec;29(13):1277-8. doi: 10.1002/pd.2400. No abstract available.
Jones K, Tierney K, Grubbs BH, Pruetz JD, Detterich J, Chmait RH. Fetoscopic laser photocoagulation of feeding vessels to a large placental chorioangioma following fetal deterioration after amnioreduction. Fetal Diagn Ther. 2012;31(3):191-5. doi: 10.1159/000331944. Epub 2011 Nov 12.
Al Wattar BH, Hillman SC, Marton T, Foster K, Kilby MD. Placenta chorioangioma: a rare case and systematic review of literature. J Matern Fetal Neonatal Med. 2014 Jul;27(10):1055-63. doi: 10.3109/14767058.2013.847424. Epub 2013 Oct 17.
Melcer Y, Maymon R, Jauniaux E. Vasa previa: prenatal diagnosis and management. Curr Opin Obstet Gynecol. 2018 Dec;30(6):385-391. doi: 10.1097/GCO.0000000000000478.
Chmait RH, Catanzarite V, Chon AH, Korst LM, Llanes A, Ouzounian JG. Fetoscopic Laser Ablation Therapy for Type II Vasa Previa. Fetal Diagn Ther. 2020;47(9):682-688. doi: 10.1159/000508044. Epub 2020 Jul 6.
Hosseinzadeh P, Shamshirsaz AA, Cass DL, Espinoza J, Lee W, Salmanian B, Ruano R, Belfort MA. Fetoscopic laser ablation of vasa previa in pregnancy complicated by giant fetal cervical lymphatic malformation. Ultrasound Obstet Gynecol. 2015 Oct;46(4):507-8. doi: 10.1002/uog.14796. No abstract available.
Quintero RA, Kontopoulos EV, Bornick PW, Allen MH. In utero laser treatment of type II vasa previa. J Matern Fetal Neonatal Med. 2007 Dec;20(12):847-51. doi: 10.1080/14767050701731605.
Van Mieghem T, Al-Ibrahim A, Deprest J, Lewi L, Langer JC, Baud D, O'Brien K, Beecroft R, Chaturvedi R, Jaeggi E, Fish J, Ryan G. Minimally invasive therapy for fetal sacrococcygeal teratoma: case series and systematic review of the literature. Ultrasound Obstet Gynecol. 2014 Jun;43(6):611-9. doi: 10.1002/uog.13315. Epub 2014 May 8.
Javadian P, Shamshirsaz AA, Haeri S, Ruano R, Ramin SM, Cass D, Olutoye OO, Belfort MA. Perinatal outcome after fetoscopic release of amniotic bands: a single-center experience and review of the literature. Ultrasound Obstet Gynecol. 2013 Oct;42(4):449-55. doi: 10.1002/uog.12510.
Gueneuc A, Chalouhi GE, Borali D, Mediouni I, Stirnemann J, Ville Y. Fetoscopic Release of Amniotic Bands Causing Limb Constriction: Case Series and Review of the Literature. Fetal Diagn Ther. 2019;46(4):246-256. doi: 10.1159/000495505. Epub 2019 Feb 6.
Slaghekke F, Lewi L, Middeldorp JM, Weingertner AS, Klumper FJ, Dekoninck P, Devlieger R, Lanna MM, Deprest J, Favre R, Oepkes D, Lopriore E. Residual anastomoses in twin-twin transfusion syndrome after laser: the Solomon randomized trial. Am J Obstet Gynecol. 2014 Sep;211(3):285.e1-7. doi: 10.1016/j.ajog.2014.05.012. Epub 2014 May 9.
Shamshirsaz AA, Chmait RH, Stirnemann J, Habli MA, Johnson A, Hessami K, Mostafaei S, Nassr AA, Donepudi RV, Sanz Cortes M, Espinoza J, Krispin E, Belfort MA. Solomon versus selective fetoscopic laser photocoagulation for twin-twin transfusion syndrome: A systematic review and meta-analysis. Prenat Diagn. 2023 Jan;43(1):72-83. doi: 10.1002/pd.6246. Epub 2022 Oct 11.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
IRB-P00044063
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.