A Prospective Study on the Role of Karl Storz Curved and Straight Fetoscopes (11508AAK and 11506AAK) for Fetoscopic Intrauterine Procedures

NCT ID: NCT06056635

Last Updated: 2024-09-25

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Clinical Phase

NA

Total Enrollment

50 participants

Study Classification

INTERVENTIONAL

Study Start Date

2024-08-15

Study Completion Date

2027-05-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

In this research study, the investigators want to learn more about the role of new innovative surgical devices, the Karl Storz Curved and Straight Fetoscopes for in-utero surgery. A fetoscope is like a small telescope that can see inside of the uterus (womb) during minimally invasive surgery. The curved scope is used for patients with an anterior placenta (front of uterus), while the straight scope is used for patients with a posterior placenta (back of uterus). The scopes will be used to assist in procedures involving fetoscopic laser photocoagulation (FLP), which is a minimally invasive surgery that uses a small camera (fetoscope) to locate abnormal blood vessel connections in the placenta and seal them off using laser energy. These fetoscopes will be utilized in the diagnosis and management of various fetal conditions that can arise during pregnancy. Outcome data will be reported in a descriptive statistical analysis. The investigators will assess the surgical outcomes, short and long-term morbidity, complications, and gestational age of participants in order to evaluate the benefit of using these devices.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

The objective of this study is to evaluate the benefit of Karl Storz curved (11508AAK) and straight (11506AAK) fetoscopes for in-utero surgery. The investigators will assess the surgical outcomes, short and long-term morbidity, complications, and gestational age of participants who undergo intrauterine procedures with these devices. The scopes will be used to assist in intrauterine procedures across a variety of fetal conditions, such as TTTS (twin-twin transfusion syndrome), TAPS (twin anemia polycythemia sequence), sFGR (selective fetal growth restriction) or TRAP sequence (twin reversed arterial perfusion). Fetoscopic laser photocoagulation (FLP) can also be used during in-utero surgery to correct abnormal vessels in cases like chorioangioma or vasa previa. Other complex congenital anomalies may require fetal intervention or diagnostic fetoscopy using Storz scopes.

Improvements in the technique, experience and equipment have been associated with better maternal, fetal, and neonatal outcomes in fetal surgery. Smaller fetoscopes are associated with lower rates of premature delivery following FLP. New fetoscopes (11508AAK and 11506AAK) have the potential to improve visualization and the photocoagulation angle. Compared to alternative scopes, these Storz scopes provide a wider angle of view and are longer, enabling better reach to distant areas at the edge of the placenta, especially in cases of higher BMI, higher gestational age, and significant polyhydramnios.

This study is an un-blinded, non-randomized, single arm, feasibility study on a convenience cohort to demonstrate the role of a curved fetoscope device (11508AAK) or straight fetoscope device (11506AAK) among in-utero surgeries. Patients will be enrolled in a consecutive manner and all qualifying, patients who agreed to the use of the curved or straight fetoscopes will be enrolled in the study. Outcome data will be reported as a descriptive statistical analysis. The curved fetoscope (11508AAK) device will be used in monochorionic pregnancies with an anterior placenta requiring in-utero surgery, while the straight fetoscope (11506AAK) will be used in monochorionic pregnancies with a posterior placenta. This device is classified as a significant risk device because it is of substantial importance in diagnosing, curing, mitigating, or treating disease, or otherwise preventing impairment of human health and presents a potential for serious risk to the health, safety, or welfare of a subject.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Fetal Conditions Maternal; Procedure Pregnancy Related Twin to Twin Transfusion Syndrome In Utero Procedure Affecting Fetus or Newborn Chorion; Abnormal Twin Reversal Arterial Perfusion Syndrome Twin Monochorionic Monoamniotic Placenta Chorioangioma Vasa Previa

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Karl Storz Curved or Straight Scope

A Karl Storz Curved (11508AAK) or Straight (11506AAK) Fetoscope will be used to provide visualization during in-utero (in the womb) diagnostic and interventional procedures. The curved scope will be used in patients with a placenta that sits at the front of their uterus. The straight scope will be used in patients with a placenta that sits at the back of their uterus.

Group Type EXPERIMENTAL

Karl Storz Curved Scope

Intervention Type DEVICE

The curved fetoscope (11508AAK) will be used to view target areas during in-utero procedures for patients with a placenta that sits at the front of the uterus. There are various fetal conditions that may require use of a fetoscope during minimally invasive surgery. These include the need to seal vessels in order to stop blood flow going in a specific direction during pregnancy, abnormal vessels that may need to be sealed, or to break down scar tissue, extra tissue attachments, or blockages.

Karl Storz Straight Scope

Intervention Type DEVICE

The straight fetoscope (11506AAK) will be used to view target areas during in-utero procedures for patients with a placenta that sits at the back of the uterus. There are various fetal conditions that may require use of a fetoscope during minimally invasive surgery. These include the need to seal vessels in order to stop blood flow going in a specific direction during pregnancy, abnormal vessels that may need to be sealed, or to break down scar tissue, extra tissue attachments, or blockages.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Karl Storz Curved Scope

The curved fetoscope (11508AAK) will be used to view target areas during in-utero procedures for patients with a placenta that sits at the front of the uterus. There are various fetal conditions that may require use of a fetoscope during minimally invasive surgery. These include the need to seal vessels in order to stop blood flow going in a specific direction during pregnancy, abnormal vessels that may need to be sealed, or to break down scar tissue, extra tissue attachments, or blockages.

Intervention Type DEVICE

Karl Storz Straight Scope

The straight fetoscope (11506AAK) will be used to view target areas during in-utero procedures for patients with a placenta that sits at the back of the uterus. There are various fetal conditions that may require use of a fetoscope during minimally invasive surgery. These include the need to seal vessels in order to stop blood flow going in a specific direction during pregnancy, abnormal vessels that may need to be sealed, or to break down scar tissue, extra tissue attachments, or blockages.

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Pregnant patient with a condition requiring in-utero surgery
* Patient must be eligible for anesthesia
* Patient and father of the fetus (if available) are able to provide signed informed consent

Exclusion Criteria

* Allergy or previous adverse reaction to any ancillary medication specified in this protocol that has no alternative
* Preterm labor, preeclampsia, or uterine anomaly (e.g., large fibroid tumor) in the index pregnancy
* Suspicion of major recognized congenital syndrome on ultrasound or MRI that is not compatible with postnatal life
* Pre-pregnancy maternal BMI greater than 40
* High risk for fetal hemophilia
* Fetal aneuploidy or variants of known significance if an amniocentesis was performed
* Contraindication to abdominal surgery or fetoscopic surgery
Minimum Eligible Age

18 Years

Maximum Eligible Age

45 Years

Eligible Sex

FEMALE

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Boston Children's Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Eyal Krispin

Attending Physician, Maternal Fetal Care Center

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Eyal Krispin, MD

Role: PRINCIPAL_INVESTIGATOR

Fetal Surgeon

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Boston Children's Hospital

Boston, Massachusetts, United States

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

United States

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Brittany Gudanowski

Role: CONTACT

617-919-6658

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Brittany Gudanowski

Role: primary

617-919-6658

Fetal Care and Surgery Center

Role: backup

617-355-6512

References

Explore related publications, articles, or registry entries linked to this study.

Petersen SG, Gibbons KS, Luks FI, Lewi L, Diemert A, Hecher K, Dickinson JE, Stirnemann JJ, Ville Y, Devlieger R, Gardener G, Deprest JA. The Impact of Entry Technique and Access Diameter on Prelabour Rupture of Membranes Following Primary Fetoscopic Laser Treatment for Twin-Twin Transfusion Syndrome. Fetal Diagn Ther. 2016;40(2):100-9. doi: 10.1159/000441915. Epub 2016 Apr 14.

Reference Type BACKGROUND
PMID: 27073886 (View on PubMed)

Papanna R, Block-Abraham D, Mann LK, Buhimschi IA, Bebbington M, Garcia E, Kahlek N, Harman C, Johnson A, Baschat A, Moise KJ Jr. Risk factors associated with preterm delivery after fetoscopic laser ablation for twin-twin transfusion syndrome. Ultrasound Obstet Gynecol. 2014 Jan;43(1):48-53. doi: 10.1002/uog.13206.

Reference Type BACKGROUND
PMID: 24013922 (View on PubMed)

Diehl W, Diemert A, Grasso D, Sehner S, Wegscheider K, Hecher K. Fetoscopic laser coagulation in 1020 pregnancies with twin-twin transfusion syndrome demonstrates improvement in double-twin survival rate. Ultrasound Obstet Gynecol. 2017 Dec;50(6):728-735. doi: 10.1002/uog.17520.

Reference Type BACKGROUND
PMID: 28477345 (View on PubMed)

Senat MV, Deprest J, Boulvain M, Paupe A, Winer N, Ville Y. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med. 2004 Jul 8;351(2):136-44. doi: 10.1056/NEJMoa032597. Epub 2004 Jul 6.

Reference Type BACKGROUND
PMID: 15238624 (View on PubMed)

Deprest JA, Van Schoubroeck D, Van Ballaer PP, Flageole H, Van Assche FA, Vandenberghe K. Alternative technique for Nd: YAG laser coagulation in twin-to-twin transfusion syndrome with anterior placenta. Ultrasound Obstet Gynecol. 1998 May;11(5):347-52. doi: 10.1046/j.1469-0705.1998.11050347.x.

Reference Type BACKGROUND
PMID: 9644775 (View on PubMed)

Middeldorp JM, Lopriore E, Sueters M, Klumper FJ, Kanhai HH, Vandenbussche FP, Oepkes D. Twin-to-twin transfusion syndrome after 26 weeks of gestation: is there a role for fetoscopic laser surgery? BJOG. 2007 Jun;114(6):694-8. doi: 10.1111/j.1471-0528.2007.01337.x.

Reference Type BACKGROUND
PMID: 17516960 (View on PubMed)

Shamshirsaz AA, Javadian P, Ruano R, Haeri S, Sangi-Haghpeykar H, Lee TC, Molohon J, Cass DL, Salmanian B, Mollett L, Moaddab A, Espinosa J, Olutoye OO, Belfort MA. Comparison between laparoscopically assisted and standard fetoscopic laser ablation in patients with anterior and posterior placentation in twin-twin transfusion syndrome: a single center study. Prenat Diagn. 2015 Apr;35(4):376-81. doi: 10.1002/pd.4552. Epub 2015 Mar 1.

Reference Type BACKGROUND
PMID: 25559783 (View on PubMed)

Krispin E, Nassr AA, Espinoza J, Donepudi R, Sun RC, Sanz-Cortes M, Mostafaei S, Belfort MA, Shamshirsaz AA. Outcomes of laparoscopy-assisted fetoscopic laser photocoagulation for twin-twin transfusion syndrome: An established alternative for inaccessible anterior placenta. Prenat Diagn. 2021 Nov;41(12):1582-1588. doi: 10.1002/pd.5955. Epub 2021 Oct 17.

Reference Type BACKGROUND
PMID: 34658043 (View on PubMed)

Jarboe MD, Berman DR, Wright T, Treadwell MC, Mychaliska GB. Novel Application of Laparoscopic Ultrasound for Fetoscopic Laser Ablation in Twin-Twin Transfusion Syndrome with Complete Anterior Placenta. Fetal Diagn Ther. 2017;41(1):71-75. doi: 10.1159/000439526. Epub 2015 Nov 11.

Reference Type BACKGROUND
PMID: 26555815 (View on PubMed)

Quintero RA, Chmait RH, Bornick PW, Kontopoulos EV. Trocar-assisted selective laser photocoagulation of communicating vessels: a technique for the laser treatment of patients with twin-twin transfusion syndrome with inaccessible anterior placentas. J Matern Fetal Neonatal Med. 2010 Apr;23(4):330-4. doi: 10.3109/14767050903177177.

Reference Type BACKGROUND
PMID: 19941443 (View on PubMed)

Quintero RA, Bornick PW, Allen MH, Johson PK. Selective laser photocoagulation of communicating vessels in severe twin-twin transfusion syndrome in women with an anterior placenta. Obstet Gynecol. 2001 Mar;97(3):477-81. doi: 10.1016/s0029-7844(00)01172-8.

Reference Type BACKGROUND
PMID: 11256383 (View on PubMed)

Huber A, Baschat AA, Bregenzer T, Diemert A, Tchirikov M, Hackeloer BJ, Hecher K. Laser coagulation of placental anastomoses with a 30 degrees fetoscope in severe mid-trimester twin-twin transfusion syndrome with anterior placenta. Ultrasound Obstet Gynecol. 2008 Apr;31(4):412-6. doi: 10.1002/uog.5283.

Reference Type BACKGROUND
PMID: 18330890 (View on PubMed)

Van Der Veeken L, Couck I, Van Der Merwe J, De Catte L, Devlieger R, Deprest J, Lewi L. Laser for twin-to-twin transfusion syndrome: a guide for endoscopic surgeons. Facts Views Vis Obgyn. 2019 Sep;11(3):197-205.

Reference Type BACKGROUND
PMID: 32082525 (View on PubMed)

Tollenaar LSA, Slaghekke F, Lewi L, Colmant C, Lanna M, Weingertner AS, Ryan G, Arevalo S, Klaritsch P, Tavares de Sousa M, Khalil A, Papanna R, Gardener GJ, Bevilacqua E, Kostyukov KV, Bahtiyar MO, Kilby MD, Tiblad E, Oepkes D, Lopriore E. Spontaneous twin anemia polycythemia sequence: diagnosis, management, and outcome in an international cohort of 249 cases. Am J Obstet Gynecol. 2021 Feb;224(2):213.e1-213.e11. doi: 10.1016/j.ajog.2020.07.041. Epub 2020 Jul 27.

Reference Type BACKGROUND
PMID: 32730900 (View on PubMed)

Tollenaar LSA, Lopriore E, Faiola S, Lanna M, Stirnemann J, Ville Y, Lewi L, Devlieger R, Weingertner AS, Favre R, Hobson SR, Ryan G, Rodo C, Arevalo S, Klaritsch P, Greimel P, Hecher K, de Sousa MT, Khalil A, Thilaganathan B, Bergh EP, Papanna R, Gardener GJ, Carlin A, Bevilacqua E, Sakalo VA, Kostyukov KV, Bahtiyar MO, Wilpers A, Kilby MD, Tiblad E, Oepkes D, Middeldorp JM, Haak MC, Klumper FJCM, Akkermans J, Slaghekke F. Post-Laser Twin Anemia Polycythemia Sequence: Diagnosis, Management, and Outcome in an International Cohort of 164 Cases. J Clin Med. 2020 Jun 5;9(6):1759. doi: 10.3390/jcm9061759.

Reference Type BACKGROUND
PMID: 32517071 (View on PubMed)

Tollenaar LSA, Slaghekke F, Lewi L, Ville Y, Lanna M, Weingertner A, Ryan G, Arevalo S, Khalil A, Brock CO, Klaritsch P, Hecher K, Gardener G, Bevilacqua E, Kostyukov KV, Bahtiyar MO, Kilby MD, Tiblad E, Oepkes D, Lopriore E; Collaborators. Treatment and outcome of 370 cases with spontaneous or post-laser twin anemia-polycythemia sequence managed in 17 fetal therapy centers. Ultrasound Obstet Gynecol. 2020 Sep;56(3):378-387. doi: 10.1002/uog.22042.

Reference Type BACKGROUND
PMID: 32291846 (View on PubMed)

Gratacos E, Lewi L, Munoz B, Acosta-Rojas R, Hernandez-Andrade E, Martinez JM, Carreras E, Deprest J. A classification system for selective intrauterine growth restriction in monochorionic pregnancies according to umbilical artery Doppler flow in the smaller twin. Ultrasound Obstet Gynecol. 2007 Jul;30(1):28-34. doi: 10.1002/uog.4046.

Reference Type BACKGROUND
PMID: 17542039 (View on PubMed)

Zhao D, Lipa M, Wielgos M, Cohen D, Middeldorp JM, Oepkes D, Lopriore E. Comparison Between Monochorionic and Dichorionic Placentas With Special Attention to Vascular Anastomoses and Placental Share. Twin Res Hum Genet. 2016 Jun;19(3):191-6. doi: 10.1017/thg.2016.19. Epub 2016 Apr 12.

Reference Type BACKGROUND
PMID: 27068823 (View on PubMed)

Zhao DP, de Villiers SF, Slaghekke F, Walther FJ, Middeldorp JM, Oepkes D, Lopriore E. Prevalence, size, number and localization of vascular anastomoses in monochorionic placentas. Placenta. 2013 Jul;34(7):589-93. doi: 10.1016/j.placenta.2013.04.005. Epub 2013 Apr 29.

Reference Type BACKGROUND
PMID: 23639577 (View on PubMed)

Mendez-Figueroa H, Papanna R, Popek EJ, Byrd RH, Goldaber K, Moise KJ Jr, Johnson A. Endoscopic laser coagulation following amnioreduction for the management of a large placental chorioangioma. Prenat Diagn. 2009 Dec;29(13):1277-8. doi: 10.1002/pd.2400. No abstract available.

Reference Type BACKGROUND
PMID: 19918962 (View on PubMed)

Jones K, Tierney K, Grubbs BH, Pruetz JD, Detterich J, Chmait RH. Fetoscopic laser photocoagulation of feeding vessels to a large placental chorioangioma following fetal deterioration after amnioreduction. Fetal Diagn Ther. 2012;31(3):191-5. doi: 10.1159/000331944. Epub 2011 Nov 12.

Reference Type BACKGROUND
PMID: 22086270 (View on PubMed)

Al Wattar BH, Hillman SC, Marton T, Foster K, Kilby MD. Placenta chorioangioma: a rare case and systematic review of literature. J Matern Fetal Neonatal Med. 2014 Jul;27(10):1055-63. doi: 10.3109/14767058.2013.847424. Epub 2013 Oct 17.

Reference Type BACKGROUND
PMID: 24460422 (View on PubMed)

Melcer Y, Maymon R, Jauniaux E. Vasa previa: prenatal diagnosis and management. Curr Opin Obstet Gynecol. 2018 Dec;30(6):385-391. doi: 10.1097/GCO.0000000000000478.

Reference Type BACKGROUND
PMID: 30102606 (View on PubMed)

Chmait RH, Catanzarite V, Chon AH, Korst LM, Llanes A, Ouzounian JG. Fetoscopic Laser Ablation Therapy for Type II Vasa Previa. Fetal Diagn Ther. 2020;47(9):682-688. doi: 10.1159/000508044. Epub 2020 Jul 6.

Reference Type BACKGROUND
PMID: 32629451 (View on PubMed)

Hosseinzadeh P, Shamshirsaz AA, Cass DL, Espinoza J, Lee W, Salmanian B, Ruano R, Belfort MA. Fetoscopic laser ablation of vasa previa in pregnancy complicated by giant fetal cervical lymphatic malformation. Ultrasound Obstet Gynecol. 2015 Oct;46(4):507-8. doi: 10.1002/uog.14796. No abstract available.

Reference Type BACKGROUND
PMID: 25612246 (View on PubMed)

Quintero RA, Kontopoulos EV, Bornick PW, Allen MH. In utero laser treatment of type II vasa previa. J Matern Fetal Neonatal Med. 2007 Dec;20(12):847-51. doi: 10.1080/14767050701731605.

Reference Type BACKGROUND
PMID: 18050017 (View on PubMed)

Van Mieghem T, Al-Ibrahim A, Deprest J, Lewi L, Langer JC, Baud D, O'Brien K, Beecroft R, Chaturvedi R, Jaeggi E, Fish J, Ryan G. Minimally invasive therapy for fetal sacrococcygeal teratoma: case series and systematic review of the literature. Ultrasound Obstet Gynecol. 2014 Jun;43(6):611-9. doi: 10.1002/uog.13315. Epub 2014 May 8.

Reference Type BACKGROUND
PMID: 24488859 (View on PubMed)

Javadian P, Shamshirsaz AA, Haeri S, Ruano R, Ramin SM, Cass D, Olutoye OO, Belfort MA. Perinatal outcome after fetoscopic release of amniotic bands: a single-center experience and review of the literature. Ultrasound Obstet Gynecol. 2013 Oct;42(4):449-55. doi: 10.1002/uog.12510.

Reference Type BACKGROUND
PMID: 23671033 (View on PubMed)

Gueneuc A, Chalouhi GE, Borali D, Mediouni I, Stirnemann J, Ville Y. Fetoscopic Release of Amniotic Bands Causing Limb Constriction: Case Series and Review of the Literature. Fetal Diagn Ther. 2019;46(4):246-256. doi: 10.1159/000495505. Epub 2019 Feb 6.

Reference Type BACKGROUND
PMID: 30726851 (View on PubMed)

Slaghekke F, Lewi L, Middeldorp JM, Weingertner AS, Klumper FJ, Dekoninck P, Devlieger R, Lanna MM, Deprest J, Favre R, Oepkes D, Lopriore E. Residual anastomoses in twin-twin transfusion syndrome after laser: the Solomon randomized trial. Am J Obstet Gynecol. 2014 Sep;211(3):285.e1-7. doi: 10.1016/j.ajog.2014.05.012. Epub 2014 May 9.

Reference Type BACKGROUND
PMID: 24813598 (View on PubMed)

Shamshirsaz AA, Chmait RH, Stirnemann J, Habli MA, Johnson A, Hessami K, Mostafaei S, Nassr AA, Donepudi RV, Sanz Cortes M, Espinoza J, Krispin E, Belfort MA. Solomon versus selective fetoscopic laser photocoagulation for twin-twin transfusion syndrome: A systematic review and meta-analysis. Prenat Diagn. 2023 Jan;43(1):72-83. doi: 10.1002/pd.6246. Epub 2022 Oct 11.

Reference Type BACKGROUND
PMID: 36184777 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

IRB-P00044063

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.