Smell in COVID-19 and Efficacy of Nasal Theophylline (SCENT 3)
NCT ID: NCT05947643
Last Updated: 2025-08-20
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE2
77 participants
INTERVENTIONAL
2022-11-22
2025-08-04
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
This study will also be used to describe adverse effects related to intranasal theophylline irrigation.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Smell in Covid-19 and Efficacy of Nasal Theophylline
NCT04789499
Smell Changes & Efficacy of Nasal Theophylline
NCT03990766
Treatment of Pediatric Patients That Lost Sense of Smell Due to COVID-19
NCT04964414
A Nasal Treatment for COVID-19
NCT05799521
Simvastatin Nasal Rinses for the Treatment of COVID-19 Mediated Dysomsia
NCT05542095
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Theophylline has been shown to improve outcomes in post-viral OD in pilot studies, and initial data suggests therapeutic benefit in patients with post-COVID OD with minimal systemic absorption.
The primary hypothesis is that theophylline irrigation will be more effective than placebo saline irrigation for COVID-19 related OD symptoms. The use of intranasal theophylline will have minimal adverse effects.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
SINGLE_GROUP
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Theophylline
Participants will dissolve the contents of the 400 mg theophylline capsules (experimental) into the sinus rinse bottle containing nasal saline.
theophylline
capsules dissolved in intranasal irrigation
Placebo
Participant will dissolve the contents of the identical-appearing lactose capsules (control) into the sinus rinse bottle containing nasal saline.
Placebo
identical-appearing lactose capsules dissolved in intranasal irrigation
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
theophylline
capsules dissolved in intranasal irrigation
Placebo
identical-appearing lactose capsules dissolved in intranasal irrigation
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. located within or willing to travel to the state of Missouri or Illinois
3. Olfactory dysfunction that has persisted for \>3 months following suspected COVID-19 infection
4. Baseline University of Pennsylvania Smell Identification Test (UPSIT) consistent with decreased olfactory function (\<= 34 in women, \<=33 in men). This test is a clinically validated 40-question forced-choice odor identification test where microencapsulated odorants on a strip are released by scratching.70 This will determine that patients have both subjectively and objectively diagnosed OD prior to undergoing treatment.
5. Ability to read, write, and understand English and have access to email.
Exclusion Criteria
2. Any use of concomitant therapies specifically for the treatment of olfactory dysfunction
3. Use of or participation in previous trials of intranasal theophylline.
4. Known existence of nasal polyps, prior sinonasal, or anterior skull-based surgery
5. Dependence on theophylline for comorbid conditions such as asthma and chronic obstructive pulmonary disease (COPD)
6. History of an allergic reaction to theophylline or other methylxanthines
7. History of neurodegenerative disease (ie. Alzheimer's dementia, Parkinson's disease, Lewy body dementia, frontotemporal dementia)
8. Pregnant or breastfeeding mothers.
9. Current use of medications with significant (≥40%) interactions with theophylline, which include cimetidine, ciprofloxacin, disulfiram, enoxacin, fluvoxamine, interferon- alpha, lithium, mexiletine, phenytoin, propafenone, propranolol, tacrine, thiabendazole, ticlopidine, and troleandomycin.
18 Years
75 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Washington University School of Medicine
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Jay F Piccirillo, MD
Role: PRINCIPAL_INVESTIGATOR
Washington University School of Medicine
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Washington University School of Medicine
St Louis, Missouri, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Kaye R, Chang CWD, Kazahaya K, Brereton J, Denneny JC 3rd. COVID-19 Anosmia Reporting Tool: Initial Findings. Otolaryngol Head Neck Surg. 2020 Jul;163(1):132-134. doi: 10.1177/0194599820922992. Epub 2020 Apr 28.
Meng X, Deng Y, Dai Z, Meng Z. COVID-19 and anosmia: A review based on up-to-date knowledge. Am J Otolaryngol. 2020 Sep-Oct;41(5):102581. doi: 10.1016/j.amjoto.2020.102581. Epub 2020 Jun 2.
Whitcroft KL, Hummel T. Clinical Diagnosis and Current Management Strategies for Olfactory Dysfunction: A Review. JAMA Otolaryngol Head Neck Surg. 2019 Sep 1;145(9):846-853. doi: 10.1001/jamaoto.2019.1728.
Dong E, Ratcliff J, Goyea TD, Katz A, Lau R, Ng TK, Garcia B, Bolt E, Prata S, Zhang D, Murray RC, Blake MR, Du H, Ganjkhanloo F, Ahmadi F, Williams J, Choudhury S, Gardner LM. The Johns Hopkins University Center for Systems Science and Engineering COVID-19 Dashboard: data collection process, challenges faced, and lessons learned. Lancet Infect Dis. 2022 Dec;22(12):e370-e376. doi: 10.1016/S1473-3099(22)00434-0. Epub 2022 Aug 31.
Menni C, Valdes AM, Polidori L, Antonelli M, Penamakuri S, Nogal A, Louca P, May A, Figueiredo JC, Hu C, Molteni E, Canas L, Osterdahl MF, Modat M, Sudre CH, Fox B, Hammers A, Wolf J, Capdevila J, Chan AT, David SP, Steves CJ, Ourselin S, Spector TD. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study. Lancet. 2022 Apr 23;399(10335):1618-1624. doi: 10.1016/S0140-6736(22)00327-0. Epub 2022 Apr 7.
Chen M, Pekosz A, Villano JS, Shen W, Zhou R, Kulaga H, Li Z, Smith A, Gurung A, Beck SE, Witwer KW, Mankowski JL, Ramanathan M Jr, Rowan NR, Lane AP. Evolution of nasal and olfactory infection characteristics of SARS-CoV-2 variants. J Clin Invest. 2024 Mar 14;134(8):e174439. doi: 10.1172/JCI174439.
Sedaghat AR, Gengler I, Speth MM. Olfactory Dysfunction: A Highly Prevalent Symptom of COVID-19 With Public Health Significance. Otolaryngol Head Neck Surg. 2020 Jul;163(1):12-15. doi: 10.1177/0194599820926464. Epub 2020 May 5.
Moein ST, Hashemian SM, Mansourafshar B, Khorram-Tousi A, Tabarsi P, Doty RL. Smell dysfunction: a biomarker for COVID-19. Int Forum Allergy Rhinol. 2020 Aug;10(8):944-950. doi: 10.1002/alr.22587. Epub 2020 Jun 18.
Menni C, Sudre CH, Steves CJ, Ourselin S, Spector TD. Quantifying additional COVID-19 symptoms will save lives. Lancet. 2020 Jun 20;395(10241):e107-e108. doi: 10.1016/S0140-6736(20)31281-2. Epub 2020 Jun 4. No abstract available.
Carfi A, Bernabei R, Landi F; Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020 Aug 11;324(6):603-605. doi: 10.1001/jama.2020.12603.
Tan BKJ, Han R, Zhao JJ, Tan NKW, Quah ESH, Tan CJ, Chan YH, Teo NWY, Charn TC, See A, Xu S, Chapurin N, Chandra RK, Chowdhury N, Butowt R, von Bartheld CS, Kumar BN, Hopkins C, Toh ST. Prognosis and persistence of smell and taste dysfunction in patients with covid-19: meta-analysis with parametric cure modelling of recovery curves. BMJ. 2022 Jul 27;378:e069503. doi: 10.1136/bmj-2021-069503.
Whitcroft KL, Hummel T. Olfactory Dysfunction in COVID-19: Diagnosis and Management. JAMA. 2020 Jun 23;323(24):2512-2514. doi: 10.1001/jama.2020.8391. No abstract available.
Catton G, Gardner A. COVID-19 Induced Taste Dysfunction and Recovery: Association with Smell Dysfunction and Oral Health Behaviour. Medicina (Kaunas). 2022 May 26;58(6):715. doi: 10.3390/medicina58060715.
Sungnak W, Huang N, Becavin C, Berg M, Queen R, Litvinukova M, Talavera-Lopez C, Maatz H, Reichart D, Sampaziotis F, Worlock KB, Yoshida M, Barnes JL; HCA Lung Biological Network. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020 May;26(5):681-687. doi: 10.1038/s41591-020-0868-6. Epub 2020 Apr 23.
Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, de Meulder D, van Amerongen G, van den Brand J, Okba NMA, Schipper D, van Run P, Leijten L, Sikkema R, Verschoor E, Verstrepen B, Bogers W, Langermans J, Drosten C, Fentener van Vlissingen M, Fouchier R, de Swart R, Koopmans M, Haagmans BL. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020 May 29;368(6494):1012-1015. doi: 10.1126/science.abb7314. Epub 2020 Apr 17.
Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang M, Song Y, Xia J, Guo Q, Song T, He J, Yen HL, Peiris M, Wu J. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020 Mar 19;382(12):1177-1179. doi: 10.1056/NEJMc2001737. Epub 2020 Feb 19. No abstract available.
Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020 Apr 1;11(7):995-998. doi: 10.1021/acschemneuro.0c00122. Epub 2020 Mar 13.
Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong B, Chance R, Macaulay IC, Chou HJ, Fletcher RB, Das D, Street K, de Bezieux HR, Choi YG, Risso D, Dudoit S, Purdom E, Mill J, Hachem RA, Matsunami H, Logan DW, Goldstein BJ, Grubb MS, Ngai J, Datta SR. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020 Jul 31;6(31):eabc5801. doi: 10.1126/sciadv.abc5801. Epub 2020 Jul 24.
Morbini P, Benazzo M, Verga L, Pagella FG, Mojoli F, Bruno R, Marena C. Ultrastructural Evidence of Direct Viral Damage to the Olfactory Complex in Patients Testing Positive for SARS-CoV-2. JAMA Otolaryngol Head Neck Surg. 2020 Oct 1;146(10):972-973. doi: 10.1001/jamaoto.2020.2366. No abstract available.
Politi LS, Salsano E, Grimaldi M. Magnetic Resonance Imaging Alteration of the Brain in a Patient With Coronavirus Disease 2019 (COVID-19) and Anosmia. JAMA Neurol. 2020 Aug 1;77(8):1028-1029. doi: 10.1001/jamaneurol.2020.2125. No abstract available.
Pekala K, Chandra RK, Turner JH. Efficacy of olfactory training in patients with olfactory loss: a systematic review and meta-analysis. Int Forum Allergy Rhinol. 2016 Mar;6(3):299-307. doi: 10.1002/alr.21669. Epub 2015 Dec 1.
Wilson DA, Best AR, Sullivan RM. Plasticity in the olfactory system: lessons for the neurobiology of memory. Neuroscientist. 2004 Dec;10(6):513-24. doi: 10.1177/1073858404267048.
Kollndorfer K, Kowalczyk K, Hoche E, Mueller CA, Pollak M, Trattnig S, Schopf V. Recovery of olfactory function induces neuroplasticity effects in patients with smell loss. Neural Plast. 2014;2014:140419. doi: 10.1155/2014/140419. Epub 2014 Dec 3.
Hoffman HJ, Rawal S, Li CM, Duffy VB. New chemosensory component in the U.S. National Health and Nutrition Examination Survey (NHANES): first-year results for measured olfactory dysfunction. Rev Endocr Metab Disord. 2016 Jun;17(2):221-40. doi: 10.1007/s11154-016-9364-1.
Liu B, Luo Z, Pinto JM, Shiroma EJ, Tranah GJ, Wirdefeldt K, Fang F, Harris TB, Chen H. Relationship Between Poor Olfaction and Mortality Among Community-Dwelling Older Adults: A Cohort Study. Ann Intern Med. 2019 May 21;170(10):673-681. doi: 10.7326/M18-0775. Epub 2019 Apr 30.
Pinto JM, Wroblewski KE, Kern DW, Schumm LP, McClintock MK. Olfactory dysfunction predicts 5-year mortality in older adults. PLoS One. 2014 Oct 1;9(10):e107541. doi: 10.1371/journal.pone.0107541. eCollection 2014.
Van Regemorter V, Hummel T, Rosenzweig F, Mouraux A, Rombaux P, Huart C. Mechanisms Linking Olfactory Impairment and Risk of Mortality. Front Neurosci. 2020 Feb 21;14:140. doi: 10.3389/fnins.2020.00140. eCollection 2020.
Soler ZM, Patel ZM, Turner JH, Holbrook EH. A primer on viral-associated olfactory loss in the era of COVID-19. Int Forum Allergy Rhinol. 2020 Jul;10(7):814-820. doi: 10.1002/alr.22578. Epub 2020 Jun 1.
Bitter T, Gudziol H, Burmeister HP, Mentzel HJ, Guntinas-Lichius O, Gaser C. Anosmia leads to a loss of gray matter in cortical brain areas. Chem Senses. 2010 Jun;35(5):407-15. doi: 10.1093/chemse/bjq028. Epub 2010 Mar 15.
Murphy C, Schubert CR, Cruickshanks KJ, Klein BE, Klein R, Nondahl DM. Prevalence of olfactory impairment in older adults. JAMA. 2002 Nov 13;288(18):2307-12. doi: 10.1001/jama.288.18.2307.
Cho SH. Clinical Diagnosis and Treatment of Olfactory Dysfunction. Hanyang Med Rev. 2014;34(3):107-115.
Schiffman SS, Warwick ZS. Flavor enhancement of foods for the elderly can reverse anorexia. Neurobiol Aging. 1988 Jan-Feb;9(1):24-6. doi: 10.1016/s0197-4580(88)80009-5.
Hendriks AP. Olfactory dysfunction. Rhinology. 1988 Dec;26(4):229-51.
Reden J, Mueller A, Mueller C, Konstantinidis I, Frasnelli J, Landis BN, Hummel T. Recovery of olfactory function following closed head injury or infections of the upper respiratory tract. Arch Otolaryngol Head Neck Surg. 2006 Mar;132(3):265-9. doi: 10.1001/archotol.132.3.265.
RECOVERY Collaborative Group; Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A, Elmahi E, Prudon B, Green C, Felton T, Chadwick D, Rege K, Fegan C, Chappell LC, Faust SN, Jaki T, Jeffery K, Montgomery A, Rowan K, Juszczak E, Baillie JK, Haynes R, Landray MJ. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021 Feb 25;384(8):693-704. doi: 10.1056/NEJMoa2021436. Epub 2020 Jul 17.
Sorokowska A, Drechsler E, Karwowski M, Hummel T. Effects of olfactory training: a meta-analysis. Rhinology. 2017 Mar 1;55(1):17-26. doi: 10.4193/Rhino16.195.
Konstantinidis I, Tsakiropoulou E, Bekiaridou P, Kazantzidou C, Constantinidis J. Use of olfactory training in post-traumatic and postinfectious olfactory dysfunction. Laryngoscope. 2013 Dec;123(12):E85-90. doi: 10.1002/lary.24390. Epub 2013 Oct 4.
Konstantinidis I, Tsakiropoulou E, Constantinidis J. Long term effects of olfactory training in patients with post-infectious olfactory loss. Rhinology. 2016 Jun;54(2):170-5. doi: 10.4193/Rhino15.264.
Hura N, Xie DX, Choby GW, Schlosser RJ, Orlov CP, Seal SM, Rowan NR. Treatment of post-viral olfactory dysfunction: an evidence-based review with recommendations. Int Forum Allergy Rhinol. 2020 Sep;10(9):1065-1086. doi: 10.1002/alr.22624. Epub 2020 Jun 25.
Cerebrolycin for Treatment of Covid-related Anosmia and Ageusia.
Moon C, Simpson PJ, Tu Y, Cho H, Ronnett GV. Regulation of intracellular cyclic GMP levels in olfactory sensory neurons. J Neurochem. 2005 Oct;95(1):200-9. doi: 10.1111/j.1471-4159.2005.03356.x.
Pace U, Hanski E, Salomon Y, Lancet D. Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature. 1985 Jul 18-24;316(6025):255-8. doi: 10.1038/316255a0.
Barnes PJ. Theophylline. Pharmaceuticals (Basel). 2010 Mar 18;3(3):725-747. doi: 10.3390/ph3030725.
Ronnett GV, Parfitt DJ, Hester LD, Snyder SH. Odorant-sensitive adenylate cyclase: rapid, potent activation and desensitization in primary olfactory neuronal cultures. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2366-9. doi: 10.1073/pnas.88.6.2366.
Anholt RR. Molecular neurobiology of olfaction. Crit Rev Neurobiol. 1993;7(1):1-22.
Neumann S, Bradke F, Tessier-Lavigne M, Basbaum AI. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron. 2002 Jun 13;34(6):885-93. doi: 10.1016/s0896-6273(02)00702-x.
Henkin RI, Velicu I. cAMP and cGMP in nasal mucus: relationships to taste and smell dysfunction, gender and age. Clin Invest Med. 2008;31(2):E71-7. doi: 10.25011/cim.v31i2.3366.
Henkin RI, Velicu I. cAMP and cGMP in nasal mucus related to severity of smell loss in patients with smell dysfunction. Clin Invest Med. 2008;31(2):E78-84. doi: 10.25011/cim.v31i2.3367.
Henkin RI, Velicu I, Schmidt L. An open-label controlled trial of theophylline for treatment of patients with hyposmia. Am J Med Sci. 2009 Jun;337(6):396-406. doi: 10.1097/MAJ.0b013e3181914a97.
Levy LM, Henkin RI, Lin CS, Hutter A, Schellinger D. Increased brain activation in response to odors in patients with hyposmia after theophylline treatment demonstrated by fMRI. J Comput Assist Tomogr. 1998 Sep-Oct;22(5):760-70. doi: 10.1097/00004728-199809000-00019.
AlAjmi MF, Azhar A, Owais M, Rashid S, Hasan S, Hussain A, Rehman MT. Antiviral potential of some novel structural analogs of standard drugs repurposed for the treatment of COVID-19. J Biomol Struct Dyn. 2021 Oct;39(17):6676-6688. doi: 10.1080/07391102.2020.1799865. Epub 2020 Jul 30.
Elzupir AO. Caffeine and caffeine-containing pharmaceuticals as promising inhibitors for 3-chymotrypsin-like protease of SARS-CoV-2. J Biomol Struct Dyn. 2022 Mar;40(5):2113-2120. doi: 10.1080/07391102.2020.1835732. Epub 2020 Oct 23.
Tomita K, Chikumi H, Tokuyasu H, Yajima H, Hitsuda Y, Matsumoto Y, Sasaki T. Functional assay of NF-kappaB translocation into nuclei by laser scanning cytometry: inhibitory effect by dexamethasone or theophylline. Naunyn Schmiedebergs Arch Pharmacol. 1999 Apr;359(4):249-55. doi: 10.1007/pl00005349.
Henkin RI, Schultz M, Minnick-Poppe L. Intranasal theophylline treatment of hyposmia and hypogeusia: a pilot study. Arch Otolaryngol Head Neck Surg. 2012 Nov;138(11):1064-70. doi: 10.1001/2013.jamaoto.342.
Goldstein MF, Hilditch GJ, Frankel I, Chambers L, Dvorin DJ, Belecanech G. Intra-Nasal Theophylline for the Treatment of Chronic Anosmia and Hyposmia. Journal of Allergy and Clinical Immunology. 2017;139(2):AB252.
Gupta S, Lee JJ, Perrin A, Khan A, Smith HJ, Farrell N, Kallogjeri D, Piccirillo JF. Efficacy and Safety of Saline Nasal Irrigation Plus Theophylline for Treatment of COVID-19-Related Olfactory Dysfunction: The SCENT2 Phase 2 Randomized Clinical Trial. JAMA Otolaryngol Head Neck Surg. 2022 Sep 1;148(9):830-837. doi: 10.1001/jamaoto.2022.1573.
Dunlop BW, Gray J, Rapaport MH. Transdiagnostic Clinical Global Impression Scoring for Routine Clinical Settings. Behav Sci (Basel). 2017 Jun 27;7(3):40. doi: 10.3390/bs7030040.
Barnes PJ. Theophylline in chronic obstructive pulmonary disease: new horizons. Proc Am Thorac Soc. 2005;2(4):334-9; discussion 340-1. doi: 10.1513/pats.200504-024SR.
Tzelepis GE, Bascom AT, Safwan Badr M, Goshgarian HG. Effects of theophylline on pulmonary function in patients with traumatic tetraplegia. J Spinal Cord Med. 2006;29(3):227-33. doi: 10.1080/10790268.2006.11753878.
Yu TJ, Liu YC, Chu CM, Hu HC, Kao KC. Effects of theophylline therapy on respiratory muscle strength in patients with prolonged mechanical ventilation: A retrospective cohort study. Medicine (Baltimore). 2019 Jan;98(2):e13982. doi: 10.1097/MD.0000000000013982.
McKay SE, Howie CA, Thomson AH, Whiting B, Addis GJ. Value of theophylline treatment in patients handicapped by chronic obstructive lung disease. Thorax. 1993 Mar;48(3):227-32. doi: 10.1136/thx.48.3.227.
Hosein W, Henkin RI. Therapeutic diminution of Interleukin-10 with intranasal theophylline administration in hyposmic patients. Am J Otolaryngol. 2022 Mar-Apr;43(2):103375. doi: 10.1016/j.amjoto.2022.103375. Epub 2022 Jan 28.
Lee JJ, Peterson AM, Kallogjeri D, Jiramongkolchai P, Kukuljan S, Schneider JS, Klatt-Cromwell CN, Drescher AJ, Brunworth JD, Piccirillo JF. Smell Changes and Efficacy of Nasal Theophylline (SCENT) irrigation: A randomized controlled trial for treatment of post-viral olfactory dysfunction. Am J Otolaryngol. 2022 Mar-Apr;43(2):103299. doi: 10.1016/j.amjoto.2021.103299. Epub 2021 Dec 3.
Lee JJ, Gupta S, Kallogjeri D, Piccirillo JF. Safety of High-Dose Nasal Theophylline Irrigation in the Treatment of Postviral Olfactory Dysfunction: A Dose-Escalation Study. JAMA Otolaryngol Head Neck Surg. 2022 Sep 1;148(9):885-886. doi: 10.1001/jamaoto.2022.1574.
Doty RL, Shaman P, Dann M. Development of the University of Pennsylvania Smell Identification Test: a standardized microencapsulated test of olfactory function. Physiol Behav. 1984 Mar;32(3):489-502. doi: 10.1016/0031-9384(84)90269-5.
Theophylline in Dextrose [package insert]. Lake Forest, IL: Hospira, INC;2008
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Related Links
Access external resources that provide additional context or updates about the study.
Anosmia Rehabilitation in Patients Post Coronavirus Disease (COVID 19).
COVID-19 Anosmia Study.
Corticosteroid Nasal Spray in COVID-19 Anosmia.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
202209062
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.