Prediction of the Therapeutic Response in Depression Based on Neuro-computational Modeling Assessment of Motivation
NCT ID: NCT05866575
Last Updated: 2024-07-10
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
136 participants
INTERVENTIONAL
2023-09-12
2026-11-12
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Brain Activity Changes and Treatment Response in Depressed People Who Are Receiving Antidepressant Medication
NCT00375843
Study of Brain Response to Emotional Pictures Using a Magnetic Resonance Imaging (fMRI) While on Escitalopram
NCT00707863
Study of Electrophysiological Markers of Antidepressants in Major Depressive Disorder
NCT06532604
Neural, Genetic, and Peripheral Correlates of SSRI Pharmaco-Response
NCT01251471
Beta-CIT-SPECT and Neurophysiology in Depression
NCT00145132
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
* V0 (inclusion visit): verification of inclusion and exclusion criteria, information, and consent.
* V1 (before randomization - baseline state):
* Clinical evaluation using validated questionnaires for the severity of depression, quality of life, anhedonia, apathy, and cognitive dysfunction.
* Neuro-cognitive evaluation using a battery of tests to explore motivation, emotion processing, belief construction, and their updating. Part of the tests will be performed during the functional MRI session.
* Structural (anatomical) and functional MRI, ASL.
* Blood samples.
* Randomization and introduction of the new antidepressant will occur immediately after V1. To maximize acceptability by referring psychiatrists, dosage and co-prescriptions will be at the discretion of the psychiatrist in charge, but the assigned treatment will not be changed for 4 weeks (until V3).
* V2 (7 days after the beginning of the new antidepressant - 'early response visit'):
o Similar to V1.
* V3 (28 days after the beginning of the new antidepressant - 'conventional response visit'):
* Clinical evaluation using validated questionnaires for the severity of depression, quality of life, anhedonia, apathy, and cognitive dysfunction.
* Blood samples
* V4 (6 months after the beginning of the new antidepressant - 'remission visit'):
* Clinical evaluation using validated questionnaires for the severity of depression, quality of life, anhedonia, apathy, and cognitive dysfunction.
* Cognitive evaluation using a battery of tests to explore motivation, emotion processing, belief construction, and their updating.
* Structural (anatomical) MRI, ASL
* Blood samples
* V5 (one year after the beginning of the new antidepressant - 'functional remission visit'):
* Clinical evaluation using validated questionnaires for the severity of depression, quality of life, anhedonia, apathy, and cognitive dysfunction.
36 healthy volunteers without a history of neurologic or psychiatric disorder, matched for age, gender, and education will be included. They will perform V0-V2 (without MRI and blood sample at V2). Healthy volunteers will not receive any treatment as part of the research.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
After 4 weeks, the treatment can be adapted by the refeering psychiatrist exactly as if the patient had not been included in the trial.
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
escitalopram strategy
The strategy will not be modified for a period of 4 weeks. Dosage adjustment and co-prescriptions will be at the discretion of the refeering psychiatrist.
escitalopram
Patients will receive an antidepressant strategy : escitalopram. The strategy will not be modified for a period of 4 weeks. Dosage adjustment and co-prescriptions will be at the discretion of the refeering psychiatrist. After 4 weeks, the strategy can be adapted by the refeering psychiatrist exactly as if the patient had not been included in the trial.
vortioxetine strategy
The strategy will not be modified for a period of 4 weeks. Dosage adjustment and co-prescriptions will be at the discretion of the refeering psychiatrist.
vortioxetine
Patients will receive an antidepressant strategy : vortioxetine. The strategy will not be modified for a period of 4 weeks. Dosage adjustment and co-prescriptions will be at the discretion of the refeering psychiatrist. After 4 weeks, the treatment strategy can be adapted by the refeering psychiatrist exactly as if the patient had not been included in the trial.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
escitalopram
Patients will receive an antidepressant strategy : escitalopram. The strategy will not be modified for a period of 4 weeks. Dosage adjustment and co-prescriptions will be at the discretion of the refeering psychiatrist. After 4 weeks, the strategy can be adapted by the refeering psychiatrist exactly as if the patient had not been included in the trial.
vortioxetine
Patients will receive an antidepressant strategy : vortioxetine. The strategy will not be modified for a period of 4 weeks. Dosage adjustment and co-prescriptions will be at the discretion of the refeering psychiatrist. After 4 weeks, the treatment strategy can be adapted by the refeering psychiatrist exactly as if the patient had not been included in the trial.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* With a MADRS score \>= 24
* For which a new line of treatment is needed
* No previous line of antidepressant for this episode or wash-out long-enough to avoid carry-over effects
* Valid health care insurance
\- Valid health care insurance
Exclusion Criteria
* Subjects with a trial of escitalopram and/or vortioxetine for the current episode, or with contra-indication to one of these two drugs
* Subjects with a diagnostic of persistent depressive disorder, bipolar disorder or schizophrenia, neurodeveloppemental disorder, unremitted substance abuse disorder other than tobacco, personality disorder severe enough to compromise the follow-up (based on investigator's appreciation).
* Subject with a history of neurological disorder: parkinson's disease, dementia
* Contraindications to MRI scanning: pregnancy, claustrophobia, metallic implants
* Pregnant or breastfeeding women
* involuntary hospitalisation and legal protection measures
Healthy volunteers
* Subjects with a diagnostic of persistent depressive disorder, bipolar disorder or schizophrenia, neurodeveloppemental disorder, unremitted substance abuse disorder other than tobacco, personality disorder severe enough to compromise the follow-up (based on investigator's appreciation).
* Subject with a history of neurological disorder: parkinson's disease, dementia
* Contraindications to MRI scanning: pregnancy, claustrophobia, metallic implants
* Pregnant or breastfeeding women
18 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Centre Hospitalier St Anne
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Groupe hospitalo-universitaire de Grenoble Alpes
La Tronche, Isère, France
Centre hospitalier Universitaire de Lille
Lille, Nord, France
Centre hospitalier Universitaire de Saint-Etienne
Saint-Priest-en-Jarez, Pays de la Loire Region, France
Groupe hospitalo-universitaire Assistance Publique, hôpital Pitié Salpêtrière - Hôpitaux de Paris Sorbonne Université
Paris, , France
- Groupe hospitalo-universitaire Paris Psychiatrie et Neurosciences
Paris, , France
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Mircea Polosan
Role: primary
Renaud Jardri
Role: primary
Eric Fakra
Role: primary
Philippe Fossati
Role: primary
Fabien Vinckier
Role: primary
References
Explore related publications, articles, or registry entries linked to this study.
Bauer M, Pfennig A, Severus E, Whybrow PC, Angst J, Moller HJ; World Federation of Societies of Biological Psychiatry. Task Force on Unipolar Depressive Disorders. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorders, part 1: update 2013 on the acute and continuation treatment of unipolar depressive disorders. World J Biol Psychiatry. 2013 Jul;14(5):334-85. doi: 10.3109/15622975.2013.804195. Epub 2013 Jul 3.
Lam RW, Kennedy SH, Grigoriadis S, McIntyre RS, Milev R, Ramasubbu R, Parikh SV, Patten SB, Ravindran AV; Canadian Network for Mood and Anxiety Treatments (CANMAT). Canadian Network for Mood and Anxiety Treatments (CANMAT) clinical guidelines for the management of major depressive disorder in adults. III. Pharmacotherapy. J Affect Disord. 2009 Oct;117 Suppl 1:S26-43. doi: 10.1016/j.jad.2009.06.041. Epub 2009 Aug 11.
Uher R, Perlis RH, Henigsberg N, Zobel A, Rietschel M, Mors O, Hauser J, Dernovsek MZ, Souery D, Bajs M, Maier W, Aitchison KJ, Farmer A, McGuffin P. Depression symptom dimensions as predictors of antidepressant treatment outcome: replicable evidence for interest-activity symptoms. Psychol Med. 2012 May;42(5):967-80. doi: 10.1017/S0033291711001905. Epub 2011 Sep 20.
Pessiglione M, Vinckier F, Bouret S, Daunizeau J, Le Bouc R. Why not try harder? Computational approach to motivation deficits in neuro-psychiatric diseases. Brain. 2018 Mar 1;141(3):629-650. doi: 10.1093/brain/awx278.
Clery-Melin ML, Schmidt L, Lafargue G, Baup N, Fossati P, Pessiglione M. Why don't you try harder? An investigation of effort production in major depression. PLoS One. 2011;6(8):e23178. doi: 10.1371/journal.pone.0023178. Epub 2011 Aug 10.
Mauras T, Masson M, Fossati P, Pessiglione M. Incentive Sensitivity as a Behavioral Marker of Clinical Remission From Major Depressive Episode. J Clin Psychiatry. 2016 Jun;77(6):e697-703. doi: 10.4088/JCP.15m09995.
Le Heron C, Plant O, Manohar S, Ang YS, Jackson M, Lennox G, Hu MT, Husain M. Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson's disease. Brain. 2018 May 1;141(5):1455-1469. doi: 10.1093/brain/awy110.
Wardle MC, Treadway MT, Mayo LM, Zald DH, de Wit H. Amping up effort: effects of d-amphetamine on human effort-based decision-making. J Neurosci. 2011 Nov 16;31(46):16597-602. doi: 10.1523/JNEUROSCI.4387-11.2011.
Treadway MT, Buckholtz JW, Cowan RL, Woodward ND, Li R, Ansari MS, Baldwin RM, Schwartzman AN, Kessler RM, Zald DH. Dopaminergic mechanisms of individual differences in human effort-based decision-making. J Neurosci. 2012 May 2;32(18):6170-6. doi: 10.1523/JNEUROSCI.6459-11.2012.
Nutt D, Demyttenaere K, Janka Z, Aarre T, Bourin M, Canonico PL, Carrasco JL, Stahl S. The other face of depression, reduced positive affect: the role of catecholamines in causation and cure. J Psychopharmacol. 2007 Jul;21(5):461-71. doi: 10.1177/0269881106069938. Epub 2006 Oct 18.
Culpepper L. Escitalopram: A New SSRI for the Treatment of Depression in Primary Care. Prim Care Companion J Clin Psychiatry. 2002 Dec;4(6):209-214. doi: 10.4088/pcc.v04n0601.
Sanchez C, Asin KE, Artigas F. Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol Ther. 2015 Jan;145:43-57. doi: 10.1016/j.pharmthera.2014.07.001. Epub 2014 Jul 9.
Fervaha G, Foussias G, Agid O, Remington G. Motivational and neurocognitive deficits are central to the prediction of longitudinal functional outcome in schizophrenia. Acta Psychiatr Scand. 2014 Oct;130(4):290-9. doi: 10.1111/acps.12289. Epub 2014 May 22.
Fervaha G, Foussias G, Takeuchi H, Agid O, Remington G. Motivational deficits in major depressive disorder: Cross-sectional and longitudinal relationships with functional impairment and subjective well-being. Compr Psychiatry. 2016 Apr;66:31-8. doi: 10.1016/j.comppsych.2015.12.004. Epub 2015 Dec 18.
Berwian IM, Wenzel JG, Collins AGE, Seifritz E, Stephan KE, Walter H, Huys QJM. Computational Mechanisms of Effort and Reward Decisions in Patients With Depression and Their Association With Relapse After Antidepressant Discontinuation. JAMA Psychiatry. 2020 May 1;77(5):513-522. doi: 10.1001/jamapsychiatry.2019.4971.
Schmidt L, Lebreton M, Clery-Melin ML, Daunizeau J, Pessiglione M. Neural mechanisms underlying motivation of mental versus physical effort. PLoS Biol. 2012 Feb;10(2):e1001266. doi: 10.1371/journal.pbio.1001266. Epub 2012 Feb 21.
Skvortsova V, Palminteri S, Pessiglione M. Learning to minimize efforts versus maximizing rewards: computational principles and neural correlates. J Neurosci. 2014 Nov 19;34(47):15621-30. doi: 10.1523/JNEUROSCI.1350-14.2014.
Pessiglione M, Schmidt L, Draganski B, Kalisch R, Lau H, Dolan RJ, Frith CD. How the brain translates money into force: a neuroimaging study of subliminal motivation. Science. 2007 May 11;316(5826):904-6. doi: 10.1126/science.1140459. Epub 2007 Apr 12.
Pessiglione M, Delgado MR. The good, the bad and the brain: Neural correlates of appetitive and aversive values underlying decision making. Curr Opin Behav Sci. 2015 Oct;5:78-84. doi: 10.1016/j.cobeha.2015.08.006. Epub 2015 Aug 24.
Palminteri S, Justo D, Jauffret C, Pavlicek B, Dauta A, Delmaire C, Czernecki V, Karachi C, Capelle L, Durr A, Pessiglione M. Critical roles for anterior insula and dorsal striatum in punishment-based avoidance learning. Neuron. 2012 Dec 6;76(5):998-1009. doi: 10.1016/j.neuron.2012.10.017.
Lebreton M, Jorge S, Michel V, Thirion B, Pessiglione M. An automatic valuation system in the human brain: evidence from functional neuroimaging. Neuron. 2009 Nov 12;64(3):431-9. doi: 10.1016/j.neuron.2009.09.040.
Vinckier F, Rigoux L, Oudiette D, Pessiglione M. Neuro-computational account of how mood fluctuations arise and affect decision making. Nat Commun. 2018 Apr 26;9(1):1708. doi: 10.1038/s41467-018-03774-z.
Stephan KE, Bach DR, Fletcher PC, Flint J, Frank MJ, Friston KJ, Heinz A, Huys QJM, Owen MJ, Binder EB, Dayan P, Johnstone EC, Meyer-Lindenberg A, Montague PR, Schnyder U, Wang XJ, Breakspear M. Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. Lancet Psychiatry. 2016 Jan;3(1):77-83. doi: 10.1016/S2215-0366(15)00361-2. Epub 2015 Nov 11.
Stephan KE, Binder EB, Breakspear M, Dayan P, Johnstone EC, Meyer-Lindenberg A, Schnyder U, Wang XJ, Bach DR, Fletcher PC, Flint J, Frank MJ, Heinz A, Huys QJM, Montague PR, Owen MJ, Friston KJ. Charting the landscape of priority problems in psychiatry, part 2: pathogenesis and aetiology. Lancet Psychiatry. 2016 Jan;3(1):84-90. doi: 10.1016/S2215-0366(15)00360-0. Epub 2015 Nov 11.
Stephan KE, Schlagenhauf F, Huys QJM, Raman S, Aponte EA, Brodersen KH, Rigoux L, Moran RJ, Daunizeau J, Dolan RJ, Friston KJ, Heinz A. Computational neuroimaging strategies for single patient predictions. Neuroimage. 2017 Jan 15;145(Pt B):180-199. doi: 10.1016/j.neuroimage.2016.06.038. Epub 2016 Jun 22.
Corlett PR, Fletcher PC. Computational psychiatry: a Rosetta Stone linking the brain to mental illness. Lancet Psychiatry. 2014 Oct;1(5):399-402. doi: 10.1016/S2215-0366(14)70298-6. Epub 2014 Aug 12. No abstract available.
Hasler G. Can the neuroeconomics revolution revolutionize psychiatry? Neurosci Biobehav Rev. 2012 Jan;36(1):64-78. doi: 10.1016/j.neubiorev.2011.04.011. Epub 2011 Apr 29.
Huys QJ, Maia TV, Frank MJ. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci. 2016 Mar;19(3):404-13. doi: 10.1038/nn.4238.
Montague PR, Dolan RJ, Friston KJ, Dayan P. Computational psychiatry. Trends Cogn Sci. 2012 Jan;16(1):72-80. doi: 10.1016/j.tics.2011.11.018. Epub 2011 Dec 14.
Keks N, Hope J, Keogh S. Switching and stopping antidepressants. Aust Prescr. 2016 Jun;39(3):76-83. doi: 10.18773/austprescr.2016.039. Epub 2016 Jun 1.
Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y, Leucht S, Ruhe HG, Turner EH, Higgins JPT, Egger M, Takeshima N, Hayasaka Y, Imai H, Shinohara K, Tajika A, Ioannidis JPA, Geddes JR. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018 Apr 7;391(10128):1357-1366. doi: 10.1016/S0140-6736(17)32802-7. Epub 2018 Feb 21.
Koesters M, Ostuzzi G, Guaiana G, Breilmann J, Barbui C. Vortioxetine for depression in adults. Cochrane Database Syst Rev. 2017 Jul 5;7(7):CD011520. doi: 10.1002/14651858.CD011520.pub2.
Hartwig V, Giovannetti G, Vanello N, Lombardi M, Landini L, Simi S. Biological effects and safety in magnetic resonance imaging: a review. Int J Environ Res Public Health. 2009 Jun;6(6):1778-98. doi: 10.3390/ijerph6061778. Epub 2009 Jun 10.
Felice D, Guilloux JP, Pehrson A, Li Y, Mendez-David I, Gardier AM, Sanchez C, David DJ. Vortioxetine Improves Context Discrimination in Mice Through a Neurogenesis Independent Mechanism. Front Pharmacol. 2018 Mar 12;9:204. doi: 10.3389/fphar.2018.00204. eCollection 2018.
Hayakawa YK, Sasaki H, Takao H, Hayashi N, Kunimatsu A, Ohtomo K, Aoki S. Depressive symptoms and neuroanatomical structures in community-dwelling women: A combined voxel-based morphometry and diffusion tensor imaging study with tract-based spatial statistics. Neuroimage Clin. 2014 Mar 12;4:481-7. doi: 10.1016/j.nicl.2014.03.002. eCollection 2014.
Colle R, Dupong I, Colliot O, Deflesselle E, Hardy P, Falissard B, Ducreux D, Chupin M, Corruble E. Smaller hippocampal volumes predict lower antidepressant response/remission rates in depressed patients: A meta-analysis. World J Biol Psychiatry. 2018 Aug;19(5):360-367. doi: 10.1080/15622975.2016.1208840. Epub 2016 Aug 15.
Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pariante CM, Howes OD. Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun. 2020 Jul;87:901-909. doi: 10.1016/j.bbi.2020.02.010. Epub 2020 Feb 27.
Kojima M, Matsui K, Mizui T. BDNF pro-peptide: physiological mechanisms and implications for depression. Cell Tissue Res. 2019 Jul;377(1):73-79. doi: 10.1007/s00441-019-03034-6. Epub 2019 May 10.
Ogyu K, Kubo K, Noda Y, Iwata Y, Tsugawa S, Omura Y, Wada M, Tarumi R, Plitman E, Moriguchi S, Miyazaki T, Uchida H, Graff-Guerrero A, Mimura M, Nakajima S. Kynurenine pathway in depression: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2018 Jul;90:16-25. doi: 10.1016/j.neubiorev.2018.03.023. Epub 2018 Mar 30.
Verdonk F, Petit AC, Abdel-Ahad P, Vinckier F, Jouvion G, de Maricourt P, De Medeiros GF, Danckaert A, Van Steenwinckel J, Blatzer M, Maignan A, Langeron O, Sharshar T, Callebert J, Launay JM, Chretien F, Gaillard R. Microglial production of quinolinic acid as a target and a biomarker of the antidepressant effect of ketamine. Brain Behav Immun. 2019 Oct;81:361-373. doi: 10.1016/j.bbi.2019.06.033. Epub 2019 Jun 28.
Harrison NA, Voon V, Cercignani M, Cooper EA, Pessiglione M, Critchley HD. A Neurocomputational Account of How Inflammation Enhances Sensitivity to Punishments Versus Rewards. Biol Psychiatry. 2016 Jul 1;80(1):73-81. doi: 10.1016/j.biopsych.2015.07.018. Epub 2015 Aug 1.
Chen G, Bian H, Jiang D, Cui M, Ji S, Liu M, Lang X, Zhuo C. Pseudo-continuous arterial spin labeling imaging of cerebral blood perfusion asymmetry in drug-naive patients with first-episode major depression. Biomed Rep. 2016 Dec;5(6):675-680. doi: 10.3892/br.2016.796. Epub 2016 Oct 31.
Ota M, Noda T, Sato N, Hattori K, Teraishi T, Hori H, Nagashima A, Shimoji K, Higuchi T, Kunugi H. Characteristic distributions of regional cerebral blood flow changes in major depressive disorder patients: a pseudo-continuous arterial spin labeling (pCASL) study. J Affect Disord. 2014 Aug;165:59-63. doi: 10.1016/j.jad.2014.04.032. Epub 2014 Apr 21.
Cooper CM, Chin Fatt CR, Liu P, Grannemann BD, Carmody T, Almeida JRC, Deckersbach T, Fava M, Kurian BT, Malchow AL, McGrath PJ, McInnis M, Oquendo MA, Parsey RV, Bartlett E, Weissman M, Phillips ML, Lu H, Trivedi MH. Discovery and replication of cerebral blood flow differences in major depressive disorder. Mol Psychiatry. 2020 Jul;25(7):1500-1510. doi: 10.1038/s41380-019-0464-7. Epub 2019 Aug 6.
Kaichi Y, Okada G, Takamura M, Toki S, Akiyama Y, Higaki T, Matsubara Y, Okamoto Y, Yamawaki S, Awai K. Changes in the regional cerebral blood flow detected by arterial spin labeling after 6-week escitalopram treatment for major depressive disorder. J Affect Disord. 2016 Apr;194:135-43. doi: 10.1016/j.jad.2015.12.062. Epub 2016 Jan 21.
Ruckbeil MV, Hilgers RD, Heussen N. Randomization in survival studies: An evaluation method that takes into account selection and chronological bias. PLoS One. 2019 Jun 3;14(6):e0217946. doi: 10.1371/journal.pone.0217946. eCollection 2019.
Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979 Apr;134:382-9. doi: 10.1192/bjp.134.4.382.
Rush AJ, Trivedi MH, Ibrahim HM, Carmody TJ, Arnow B, Klein DN, Markowitz JC, Ninan PT, Kornstein S, Manber R, Thase ME, Kocsis JH, Keller MB. The 16-Item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): a psychometric evaluation in patients with chronic major depression. Biol Psychiatry. 2003 Sep 1;54(5):573-83. doi: 10.1016/s0006-3223(02)01866-8.
Development of the World Health Organization WHOQOL-BREF quality of life assessment. The WHOQOL Group. Psychol Med. 1998 May;28(3):551-8. doi: 10.1017/s0033291798006667.
Sheehan DV, Harnett-Sheehan K, Spann ME, Thompson HF, Prakash A. Assessing remission in major depressive disorder and generalized anxiety disorder clinical trials with the discan metric of the Sheehan disability scale. Int Clin Psychopharmacol. 2011 Mar;26(2):75-83. doi: 10.1097/YIC.0b013e328341bb5f.
Snaith RP, Hamilton M, Morley S, Humayan A, Hargreaves D, Trigwell P. A scale for the assessment of hedonic tone the Snaith-Hamilton Pleasure Scale. Br J Psychiatry. 1995 Jul;167(1):99-103. doi: 10.1192/bjp.167.1.99.
Starkstein SE, Mayberg HS, Preziosi TJ, Andrezejewski P, Leiguarda R, Robinson RG. Reliability, validity, and clinical correlates of apathy in Parkinson's disease. J Neuropsychiatry Clin Neurosci. 1992 Spring;4(2):134-9. doi: 10.1176/jnp.4.2.134.
Brown S, Rittenbach K, Cheung S, McKean G, MacMaster FP, Clement F. Current and Common Definitions of Treatment-Resistant Depression: Findings from a Systematic Review and Qualitative Interviews. Can J Psychiatry. 2019 Jun;64(6):380-387. doi: 10.1177/0706743719828965. Epub 2019 Feb 14.
Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W. Variational free energy and the Laplace approximation. Neuroimage. 2007 Jan 1;34(1):220-34. doi: 10.1016/j.neuroimage.2006.08.035. Epub 2006 Oct 20.
Daunizeau J, Adam V, Rigoux L. VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data. PLoS Comput Biol. 2014 Jan;10(1):e1003441. doi: 10.1371/journal.pcbi.1003441. Epub 2014 Jan 23.
O'Doherty JP, Hampton A, Kim H. Model-based fMRI and its application to reward learning and decision making. Ann N Y Acad Sci. 2007 May;1104:35-53. doi: 10.1196/annals.1390.022. Epub 2007 Apr 7.
Meyniel F, Goodwin GM, Deakin JW, Klinge C, MacFadyen C, Milligan H, Mullings E, Pessiglione M, Gaillard R. A specific role for serotonin in overcoming effort cost. Elife. 2016 Nov 8;5:e17282. doi: 10.7554/eLife.17282.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
D20-P059
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.