Deep Learning Super Resolution Reconstruction for Fast and Motion Robust T2-weighted Prostate MRI
NCT ID: NCT05820113
Last Updated: 2023-04-19
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
109 participants
INTERVENTIONAL
2022-08-01
2022-11-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Super-fast 3T Prostate MRI Using High Gradient Strength and Deep Learning
NCT06244680
Deep Learning for Prostate Segmentation
NCT04191980
Validation of a Machine Learning Model Based on MR for the Prediction of Prostate Cancer
NCT06773598
Learning MRI and Histology Image Mappings for Cancer Diagnosis and Prognosis.
NCT04792138
MR-Lymphography and Lymph Node Staging in Prostate Cancer
NCT00185029
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Standard acquisition protocols of prostate mpMRI include T2-weighted, diffusion-weighted and dynamically contrast-enhanced sequences to allow for the classification of prostatic lesions according to the Prostate Imaging Reporting \& Data System (PI-RADS). While the assignment of the PI-RADS score in the peripheral zone of the prostate is mainly determined by the diffusion weighted imaging, the T2-weighted-sequences are mainly responsible for the assessment of the transitional zone. Furthermore, thorough assessment of the prostate necessitates acquisition of T2-weighted sequences in axial and sagittal planes, thus extending acquisition time of MRI protocols. Different approaches have been proposed to accelerate and improve the image acquisition, ranging from the implementation of shortened protocols to the improvement of diffusion weighted sequences or using compressed sensing for the reconstruction of non-Cartesian T2-weighted-sequences. Besides these methods that rely on traditional acquisition and reconstruction methods, deep learning (DL) image reconstruction has become increasingly important solving these tasks to produce highly qualitative images while drastically reducing acquisition time.
Despite that, reliable DL-methods for the process of image acquisition and reconstruction of prostate mpMRI itself are sparse. While first approaches for DL denoising has been established, effectively replacing the conventional wavelet function, the remainder of the iterative reconstruction cycle is unaffected and the impact on diagnostic performance of the PI-RADS score remains unclear. Recently developed super resolution deep learning networks are promising to overcome this limitation. First results for DL denoising in different applications, e.g. in musculoskeletal MRI already show good results, leading to significant acceleration of acquisition time while maintaining high image quality. However, the application of these denoising DL-networks in combination with more advanced super resolution networks in prostate mpMRI hasn't been evaluated yet.
In this prospective study, between August and November 2022, participants with suspicion for prostate cancer underwent prostate MRI with standard high-resolution Cartesian T2 (T2C) and non-Cartesian T2 (T2NC) sequences. Additionally, a low-resolution Cartesian T2 TSE (T2SR) with DL denoising and super resolution reconstruction was acquired. Artifacts, image sharpness, lesion conspicuity, capsule delineation, overall image quality and diagnostic confidence were rated on a 5-point-Likert-Scale with being non-diagnostic and 5 being excellent. Apparent signal-to-noise ratio (aSNR), contrast-to-noise ratio (aCNR) and edge rise distance (ERD) were calculated. Friedman test and One-way ANOVA were used for group comparisons. Regarding agreement of PI-RADS scores were compared with Cohen's Kappa.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
DIAGNOSTIC
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Deep learning based reconstruction of T2-TSE sequence
Participants undergo multiparametric MRI of the prostate with inclusion of standard cartesian T2-TSE and non-cartesian T2-weighted sequences, as well as a newly developed deep learning enhanced T2-TSE sequence. All patients in this study undergo the same imaging protocol.
Deep learning based reconstruction of T2-TSE sequence
A newly developed deep-learning based reconstruction of a primarily low-resolved T2-TSE sequence is included in the imaging protocol for evaluation of prostate cancer.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Deep learning based reconstruction of T2-TSE sequence
A newly developed deep-learning based reconstruction of a primarily low-resolved T2-TSE sequence is included in the imaging protocol for evaluation of prostate cancer.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* Severe claustrophobia
18 Years
MALE
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Philips Healthcare
INDUSTRY
University Hospital, Bonn
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Julian Alexander Luetkens
Head of Cardiovascular Imaging, Principal Investigator, Senior Physician
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Julian A Luetkens, PD Dr. med.
Role: PRINCIPAL_INVESTIGATOR
University Hospital, Bonn
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University Hospital Bonn
Bonn, North Rhine-Westphalia, Germany
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4.
Eklund M, Jaderling F, Discacciati A, Bergman M, Annerstedt M, Aly M, Glaessgen A, Carlsson S, Gronberg H, Nordstrom T; STHLM3 consortium. MRI-Targeted or Standard Biopsy in Prostate Cancer Screening. N Engl J Med. 2021 Sep 2;385(10):908-920. doi: 10.1056/NEJMoa2100852. Epub 2021 Jul 9.
Hugosson J, Mansson M, Wallstrom J, Axcrona U, Carlsson SV, Egevad L, Geterud K, Khatami A, Kohestani K, Pihl CG, Socratous A, Stranne J, Godtman RA, Hellstrom M; GOTEBORG-2 Trial Investigators. Prostate Cancer Screening with PSA and MRI Followed by Targeted Biopsy Only. N Engl J Med. 2022 Dec 8;387(23):2126-2137. doi: 10.1056/NEJMoa2209454.
ACR, ESUR and AdMeTech Foundation. Prostate Imaging Reporting & Data System (PI-RADS). 2019. Version 2.1.
Weiss J, Martirosian P, Notohamiprodjo M, Kaufmann S, Othman AE, Grosse U, Nikolaou K, Gatidis S. Implementation of a 5-Minute Magnetic Resonance Imaging Screening Protocol for Prostate Cancer in Men With Elevated Prostate-Specific Antigen Before Biopsy. Invest Radiol. 2018 Mar;53(3):186-190. doi: 10.1097/RLI.0000000000000427.
Langbein BJ, Szczepankiewicz F, Westin CF, Bay C, Maier SE, Kibel AS, Tempany CM, Fennessy FM. A Pilot Study of Multidimensional Diffusion MRI for Assessment of Tissue Heterogeneity in Prostate Cancer. Invest Radiol. 2021 Dec 1;56(12):845-853. doi: 10.1097/RLI.0000000000000796.
Bischoff LM, Katemann C, Isaak A, Mesropyan N, Wichtmann B, Kravchenko D, Endler C, Kuetting D, Pieper CC, Ellinger J, Weber O, Attenberger U, Luetkens JA. T2 Turbo Spin Echo With Compressed Sensing and Propeller Acquisition (Sampling k-Space by Utilizing Rotating Blades) for Fast and Motion Robust Prostate MRI: Comparison With Conventional Acquisition. Invest Radiol. 2023 Mar 1;58(3):209-215. doi: 10.1097/RLI.0000000000000923. Epub 2022 Sep 2.
Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5.
Harder FN, Weiss K, Amiel T, Peeters JM, Tauber R, Ziegelmayer S, Burian E, Makowski MR, Sauter AP, Gschwend JE, Karampinos DC, Braren RF. Prospectively Accelerated T2-Weighted Imaging of the Prostate by Combining Compressed SENSE and Deep Learning in Patients with Histologically Proven Prostate Cancer. Cancers (Basel). 2022 Nov 22;14(23):5741. doi: 10.3390/cancers14235741.
Dong C, Loy CC, He K, Tang X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.
11. Li Y, Sixou B, Peyrin F. A Review of the Deep Learning Methods for Medical Images Super Resolution Problems. IRBM, Volume 42, Issue 2, April 2021, Pages 120-133. doi: 10.1016/j.irbm.2020.08.004
Almansour H, Herrmann J, Gassenmaier S, Afat S, Jacoby J, Koerzdoerfer G, Nickel D, Mostapha M, Nadar M, Othman AE. Deep Learning Reconstruction for Accelerated Spine MRI: Prospective Analysis of Interchangeability. Radiology. 2023 Mar;306(3):e212922. doi: 10.1148/radiol.212922. Epub 2022 Nov 1.
Kim M, Lee SM, Park C, Lee D, Kim KS, Jeong HS, Kim S, Choi MH, Nickel D. Deep Learning-Enhanced Parallel Imaging and Simultaneous Multislice Acceleration Reconstruction in Knee MRI. Invest Radiol. 2022 Dec 1;57(12):826-833. doi: 10.1097/RLI.0000000000000900. Epub 2022 Jul 1.
Pezzotti N, de Weerdt E, Yousefi S, et al. Adaptive-CS-Net: FastMRI with Adaptive Intelligence. arxiv:1912.12259. 2019;(NeurIPS).
Zhang J and Ghanem B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1828-1837
Kim J, Lee JK, Lee KM. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. arXiv:1511.04587
Chaudhari AS, Fang Z, Kogan F, Wood J, Stevens KJ, Gibbons EK, Lee JH, Gold GE, Hargreaves BA. Super-resolution musculoskeletal MRI using deep learning. Magn Reson Med. 2018 Nov;80(5):2139-2154. doi: 10.1002/mrm.27178. Epub 2018 Mar 26.
Suzuki S, Machida H, Tanaka I, Ueno E. Measurement of vascular wall attenuation: comparison of CT angiography using model-based iterative reconstruction with standard filtered back-projection algorithm CT in vitro. Eur J Radiol. 2012 Nov;81(11):3348-53. doi: 10.1016/j.ejrad.2012.02.009. Epub 2012 Mar 19.
Agarwal S, Singh O.P, Nagaria D. Analysis and Comparison of Wavelet Transforms for Denoising MRI Image. Biomed Pharmacol J 2017;10(2).
Gassenmaier S, Warm V, Nickel D, Weiland E, Herrmann J, Almansour H, Wessling D, Afat S. Thin-Slice Prostate MRI Enabled by Deep Learning Image Reconstruction. Cancers (Basel). 2023 Jan 18;15(3):578. doi: 10.3390/cancers15030578.
Ueda T, Ohno Y, Yamamoto K, Murayama K, Ikedo M, Yui M, Hanamatsu S, Tanaka Y, Obama Y, Ikeda H, Toyama H. Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging. Radiology. 2022 May;303(2):373-381. doi: 10.1148/radiol.204097. Epub 2022 Feb 1.
Johnson PM, Tong A, Donthireddy A, Melamud K, Petrocelli R, Smereka P, Qian K, Keerthivasan MB, Chandarana H, Knoll F. Deep Learning Reconstruction Enables Highly Accelerated Biparametric MR Imaging of the Prostate. J Magn Reson Imaging. 2022 Jul;56(1):184-195. doi: 10.1002/jmri.28024. Epub 2021 Dec 7.
Wright KL, Hamilton JI, Griswold MA, Gulani V, Seiberlich N. Non-Cartesian parallel imaging reconstruction. J Magn Reson Imaging. 2014 Nov;40(5):1022-40. doi: 10.1002/jmri.24521. Epub 2014 Jan 10.
Zaitsev M, Maclaren J, Herbst M. Motion artifacts in MRI: A complex problem with many partial solutions. J Magn Reson Imaging. 2015 Oct;42(4):887-901. doi: 10.1002/jmri.24850. Epub 2015 Jan 28.
Bischoff LM, Peeters JM, Weinhold L, Krausewitz P, Ellinger J, Katemann C, Isaak A, Weber OM, Kuetting D, Attenberger U, Pieper CC, Sprinkart AM, Luetkens JA. Deep Learning Super-Resolution Reconstruction for Fast and Motion-Robust T2-weighted Prostate MRI. Radiology. 2023 Sep;308(3):e230427. doi: 10.1148/radiol.230427.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
SR.001
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.