TAAI Erasmus Research Initiative to Fight CF: Monitoring Inflammation in CF Lung Disease Into a New Era
NCT ID: NCT05752019
Last Updated: 2025-07-18
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
103 participants
OBSERVATIONAL
2022-03-21
2024-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The main monitoring tools in regular CF care are lung function, sputum cultures, symptom reporting and more recently imaging by chest computed tomography (CT-scan) or magnetic resonance imaging (MRI). Strangely enough, there are currently no monitoring tools used in clinics to measure inflammation in the lung, although this is a main factor for progressive lung disease.
New highly effective modulator therapy (HEMT) such as elexacaftor/tezacaftor/ivacaftor \[ETI, Kaftrio®\] is transforming CF treatment, vastly improving lung function and reducing exacerbations. Initial CFTR modulators like ivacaftor and lumacaftor/ivacaftor also improved lung function and reduced exacerbations, but studies showed that lung inflammation was still present. The long-term impact of ETI and its effect on inflammation is not yet known.
Thus, monitoring pwCF on HEMT may be different from before, as lung damage seen on chest CT will be less apparent and lung function will improve considerably, therefore not being adequate markers for subtle changes in the lungs. Thus, the focus of monitoring in the era of highly effective CFTR modulators needs to change preferably focusing on measuring lung inflammation.
An ideal monitoring tool for lung inflammation in pwCF should be non-invasive, efficient, and provide accurate and sensitive results. Currently, sputum and BAL are the most common methods for assessing inflammation, but BAL is invasive and sputum may not always be available. Exhaled breath analysis by the electronic nose (eNose) or gas chromatography-mass spectrometry (GC-MS) of volatile organic compounds (VOCs) shows promise as a non-invasive monitoring tool. Other promising markers and techniques are inflammatory markers in the blood (cytokines and micro-RNA (miRNA)) and urine.
Thus, the objective of this project is to design novel, minimally invasive monitoring techniques capable of identifying lung inflammation in pwCF undergoing highly effective CFTR modulator therapy (ETI) compared to those not using CFTR modulators. The efficacy of these innovative techniques will be evaluated and verified against inflammatory markers in sputum, spirometry, and validated symptom and quality of life scores.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Non-Invasive Biomarkers in Cystic Fibrosis
NCT00413140
Tracking CF Lung Disease Through the Early Years: Utility of the LCI
NCT03138772
COVID-19 Antibody Responses In Cystic Fibrosis
NCT04904445
Longitudinal Analysis of Respiratory and Intestinal Microbiome in Cystic Fibrosis
NCT03335202
A CFit Study - Baseline
NCT03234387
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The overall aim of the study is to develop innovative minimally invasive monitoring techniques that can identify lung inflammation in pwCF when using highly effective modulators, compared to patients whom are not eligible for CFTR modulators (control group) yet.
Primary objective is to assess whether measuring VOCs with GC-MS is a sensitive method to monitor changes in lung inflammation in pwCF.
Secondary objectives are:
* To assess whether eNose is a sensitive method to monitor changes in lung inflammation in pwCF.
* To explore the usefulness of other inflammatory markers in blood and urine.
Study design: Explorative cohort study aimed to develop innovative minimally invasive monitoring techniques that can identify lung inflammation in pwCF when using highly effective CFTR modulators. (eNose, GC-MS, inflammatory markers in urine and blood), compared to a control group: pwCF not using CFTR modulators. Furthermore, the investigators will compare these techniques with inflammatory markers in induced sputum, conventional spirometry, symptom and quality of life scores.
Study population: pwCF older than 6 years of age who are eligible to start on ETI treatment and as a control group pwCF who are not on CFTR modulators,
Intervention: Subjects will be included till at least 3 study visits have taken place during treatment with ETI or for the control group: 3 consecutive regular outpatient clinic visits, which are usually 3 months apart. If the subject has not started with ETI an extra visit at baseline will be added just before start of ETI. At the study visits routine care checks will be done, such as spirometry and blood sampling for liver enzyme monitoring. The extra investigations performed at these study visits are: exhaled breath sampling, 3 extra vials of blood, urine collection, induced sputum. Lung clearance index (LCI) will be done for subjects below 18 years of age. Subjects may opt out for blood, induced sputum and urine samples, there always need to be an exhaled breath sampling with eNose and GC-MS. If the patient has a contra-indication or does not want to participate in the induced sputum procedure, the investigators will attempt to collect spontaneous expectorated sputum instead.
To limit their burden of the study for the age group 6-11, the investigators will not conduct all measurements in that age group. Resulting, in the following difference in study design between two age groups:
Patients \>12 years: At all visits there will be exhaled breath sampling, 3 extra vials of blood with a blooddraw, induced sputum, urine sample and 2 questionnaires (QoL and symptom score).
Patients \<12 years: At all visits there will be exhaled breath sampling and 1 questionnaire (symptom score) will be done by doing an interview with the child. On the last visit 2 extra vials of blood will be collected. For patients 6-18 years of age a multiple breath washout (MBW) for LCI will be scheduled at study visits.
Main study parameters/endpoints:
Primary endpoint is the comparison of VOCs, measured by GC-MS, during ETI treatment compared to control group over time during 3 different study visits.
Secondary endpoints entail the correlation of VOCs by GC-MS breath profiles/VOCs, measured by eNose, inflammatory markers in induced sputum (IL-8, free neutrophilic elastase (NE), calprotectin and myeloperoxidase, plus a predetermined cytokine panel), blood (IL-18, IL-1β, TNF, hsCRP, sCD14, calprotectin, HGMB-1, amyloid and miRNA), urine and, lung function, quality of life and symptom scores at baseline (if available) and overtime during 3 consecutive study visits. In addition, the change of VOCs by GC-MS and eNose from baseline till 3 months of ETI treatment will be investigated.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
ETI treatment group > 12 years
CF patients older than 12, whom are eligible to receive elexacaftor/tezacaftor/ivacaftor treatment.
No interventions assigned to this group
Control group > 12 years
CF patients older than 12, whom are not eligible to receive any CFTR-modulator.
No interventions assigned to this group
ETI treatment group < 12 years
CF patients younger than 12, whom are eligible to receive elexacaftor/tezacaftor/ivacaftor treatment.
No interventions assigned to this group
Control group < 12 years
CF patients younger than 12, whom are not eligible to receive any CFTR-modulator.
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Diagnosed with CF, either by abnormal sweat test and/or confirmed with 2 CF causing mutations found by genetic analysis, either from heel-prick screening or diagnosed later in life. Aged \>6 years (i.e. children and adults). Age appropriate written informed consent is required.
In addition, patients need to meet the criteria of one of the following study groups:
Group 1: Treated group : people with CF with mutations who are eligible to start ETI or who are already using it. This maybe patients who transition from another CFTR modulator or who are CFTR modulator naïve.
Group 2: Control group: people with CF whom are not eligible to start on any CFTR modulator yet and receive standard treatment. This group will function as controls.
Exclusion Criteria
6 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Stichting TAAI
OTHER
Erasmus Medical Center
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Hettie M Janssens, MD PhD
Pediatric pulmonologist
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Erasmus MC - Sophia Children's Hospital
Rotterdam, South Holland, Netherlands
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
De Boeck K. Cystic fibrosis in the year 2020: A disease with a new face. Acta Paediatr. 2020 May;109(5):893-899. doi: 10.1111/apa.15155. Epub 2020 Jan 22.
Horati H, Janssens HM, Margaroli C, Veltman M, Stolarczyk M, Kilgore MB, Chou J, Peng L, Tiddens HAMW, Chandler JD, Tirouvanziam R, Scholte BJ. Airway profile of bioactive lipids predicts early progression of lung disease in cystic fibrosis. J Cyst Fibros. 2020 Nov;19(6):902-909. doi: 10.1016/j.jcf.2020.01.010. Epub 2020 Feb 10.
Sly PD, Gangell CL, Chen L, Ware RS, Ranganathan S, Mott LS, Murray CP, Stick SM; AREST CF Investigators. Risk factors for bronchiectasis in children with cystic fibrosis. N Engl J Med. 2013 May 23;368(21):1963-70. doi: 10.1056/NEJMoa1301725.
Wijker NE, Vidmar S, Grimwood K, Sly PD, Byrnes CA, Carlin JB, Cooper PJ, Robertson CF, Massie RJ, Kemner van de Corput MPC, Cheney J, Tiddens HAWM, Wainwright CE; Australasian Cystic Fibrosis Bronchoalveolar Lavage (ACFBAL) and Follow-up of the ACFBAL (CF-FAB) study groups; following investigators constitute the ACFBAL Study Investigators Group:; following investigators constitute the CF FAB Study Investigators Group:; Additional contributions: We are indebted to all current and former clinical and research staff from Queensland Children's Hospital, Brisbane:. Early markers of cystic fibrosis structural lung disease: follow-up of the ACFBAL cohort. Eur Respir J. 2020 Apr 3;55(4):1901694. doi: 10.1183/13993003.01694-2019. Print 2020 Apr.
Smyth AR, Bell SC, Bojcin S, Bryon M, Duff A, Flume P, Kashirskaya N, Munck A, Ratjen F, Schwarzenberg SJ, Sermet-Gaudelus I, Southern KW, Taccetti G, Ullrich G, Wolfe S; European Cystic Fibrosis Society. European Cystic Fibrosis Society Standards of Care: Best Practice guidelines. J Cyst Fibros. 2014 May;13 Suppl 1:S23-42. doi: 10.1016/j.jcf.2014.03.010.
Margaroli C, Garratt LW, Horati H, Dittrich AS, Rosenow T, Montgomery ST, Frey DL, Brown MR, Schultz C, Guglani L, Kicic A, Peng L, Scholte BJ, Mall MA, Janssens HM, Stick SM, Tirouvanziam R. Elastase Exocytosis by Airway Neutrophils Is Associated with Early Lung Damage in Children with Cystic Fibrosis. Am J Respir Crit Care Med. 2019 Apr 1;199(7):873-881. doi: 10.1164/rccm.201803-0442OC.
Heijerman HGM, McKone EF, Downey DG, Van Braeckel E, Rowe SM, Tullis E, Mall MA, Welter JJ, Ramsey BW, McKee CM, Marigowda G, Moskowitz SM, Waltz D, Sosnay PR, Simard C, Ahluwalia N, Xuan F, Zhang Y, Taylor-Cousar JL, McCoy KS; VX17-445-103 Trial Group. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet. 2019 Nov 23;394(10212):1940-1948. doi: 10.1016/S0140-6736(19)32597-8. Epub 2019 Oct 31.
Middleton PG, Mall MA, Drevinek P, Lands LC, McKone EF, Polineni D, Ramsey BW, Taylor-Cousar JL, Tullis E, Vermeulen F, Marigowda G, McKee CM, Moskowitz SM, Nair N, Savage J, Simard C, Tian S, Waltz D, Xuan F, Rowe SM, Jain R; VX17-445-102 Study Group. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N Engl J Med. 2019 Nov 7;381(19):1809-1819. doi: 10.1056/NEJMoa1908639. Epub 2019 Oct 31.
Jarosz-Griffiths HH, Scambler T, Wong CH, Lara-Reyna S, Holbrook J, Martinon F, Savic S, Whitaker P, Etherington C, Spoletini G, Clifton I, Mehta A, McDermott MF, Peckham D. Different CFTR modulator combinations downregulate inflammation differently in cystic fibrosis. Elife. 2020 Mar 2;9:e54556. doi: 10.7554/eLife.54556.
Fens N, van der Schee MP, Brinkman P, Sterk PJ. Exhaled breath analysis by electronic nose in airways disease. Established issues and key questions. Clin Exp Allergy. 2013 Jul;43(7):705-15. doi: 10.1111/cea.12052.
de Vries R, Dagelet YWF, Spoor P, Snoey E, Jak PMC, Brinkman P, Dijkers E, Bootsma SK, Elskamp F, de Jongh FHC, Haarman EG, In 't Veen JCCM, Maitland-van der Zee AH, Sterk PJ. Clinical and inflammatory phenotyping by breathomics in chronic airway diseases irrespective of the diagnostic label. Eur Respir J. 2018 Jan 11;51(1):1701817. doi: 10.1183/13993003.01817-2017. Print 2018 Jan.
Sagel SD, Kapsner RK, Osberg I. Induced sputum matrix metalloproteinase-9 correlates with lung function and airway inflammation in children with cystic fibrosis. Pediatr Pulmonol. 2005 Mar;39(3):224-32. doi: 10.1002/ppul.20165.
Thomassen JC, Trojan T, Walz M, Vohlen C, Fink G, Rietschel E, Alejandre Alcazar MA, van Koningsbruggen-Rietschel S. Reduced neutrophil elastase inhibitor elafin and elevated transforming growth factor-beta1 are linked to inflammatory response in sputum of cystic fibrosis patients with Pseudomonas aeruginosa. ERJ Open Res. 2021 Jul 19;7(3):00636-2020. doi: 10.1183/23120541.00636-2020. eCollection 2021 Jul.
Jain R, Baines A, Khan U, Wagner BD, Sagel SD. Evaluation of airway and circulating inflammatory biomarkers for cystic fibrosis drug development. J Cyst Fibros. 2021 Jan;20(1):50-56. doi: 10.1016/j.jcf.2020.06.017. Epub 2020 Jul 1.
Quon BS, Ngan DA, Wilcox PG, Man SF, Sin DD. Plasma sCD14 as a biomarker to predict pulmonary exacerbations in cystic fibrosis. PLoS One. 2014 Feb 20;9(2):e89341. doi: 10.1371/journal.pone.0089341. eCollection 2014.
Stachowiak Z, Wojsyk-Banaszak I, Jonczyk-Potoczna K, Narozna B, Langwinski W, Kycler Z, Sobkowiak P, Breborowicz A, Szczepankiewicz A. MiRNA Expression Profile in the Airways is Altered during Pulmonary Exacerbation in Children with Cystic Fibrosis-A Preliminary Report. J Clin Med. 2020 Jun 16;9(6):1887. doi: 10.3390/jcm9061887.
Bhattacharyya S, Balakathiresan NS, Dalgard C, Gutti U, Armistead D, Jozwik C, Srivastava M, Pollard HB, Biswas R. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J Biol Chem. 2011 Apr 1;286(13):11604-15. doi: 10.1074/jbc.M110.198390. Epub 2011 Jan 31.
Krause K, Kopp BT, Tazi MF, Caution K, Hamilton K, Badr A, Shrestha C, Tumin D, Hayes D Jr, Robledo-Avila F, Hall-Stoodley L, Klamer BG, Zhang X, Partida-Sanchez S, Parinandi NL, Kirkby SE, Dakhlallah D, McCoy KS, Cormet-Boyaka E, Amer AO. The expression of Mirc1/Mir17-92 cluster in sputum samples correlates with pulmonary exacerbations in cystic fibrosis patients. J Cyst Fibros. 2018 Jul;17(4):454-461. doi: 10.1016/j.jcf.2017.11.005. Epub 2017 Dec 11.
Laguna TA, Wagner BD, Starcher B, Luckey Tarro HK, Mann SA, Sagel SD, Accurso FJ. Urinary desmosine: a biomarker of structural lung injury during CF pulmonary exacerbation. Pediatr Pulmonol. 2012 Sep;47(9):856-63. doi: 10.1002/ppul.22525. Epub 2012 Mar 19.
Bruce MC, Poncz L, Klinger JD, Stern RC, Tomashefski JF Jr, Dearborn DG. Biochemical and pathologic evidence for proteolytic destruction of lung connective tissue in cystic fibrosis. Am Rev Respir Dis. 1985 Sep;132(3):529-35. doi: 10.1164/arrd.1985.132.3.529.
Sampson AP, Spencer DA, Green CP, Piper PJ, Price JF. Leukotrienes in the sputum and urine of cystic fibrosis children. Br J Clin Pharmacol. 1990 Dec;30(6):861-9. doi: 10.1111/j.1365-2125.1990.tb05452.x.
Laguna TA, Williams CB, Nunez MG, Welchlin-Bradford C, Moen CE, Reilly CS, Wendt CH. Biomarkers of inflammation in infants with cystic fibrosis. Respir Res. 2018 Jan 8;19(1):6. doi: 10.1186/s12931-017-0713-8.
Martin SL, Moffitt KL, McDowell A, Greenan C, Bright-Thomas RJ, Jones AM, Webb AK, Elborn JS. Association of airway cathepsin B and S with inflammation in cystic fibrosis. Pediatr Pulmonol. 2010 Sep;45(9):860-8. doi: 10.1002/ppul.21274.
Neerincx AH, Whiteson K, Phan JL, Brinkman P, Abdel-Aziz MI, Weersink EJM, Altenburg J, Majoor CJ, Maitland-van der Zee AH, Bos LDJ. Lumacaftor/ivacaftor changes the lung microbiome and metabolome in cystic fibrosis patients. ERJ Open Res. 2021 Apr 19;7(2):00731-2020. doi: 10.1183/23120541.00731-2020. eCollection 2021 Apr.
Quittner AL, Modi AC, Wainwright C, Otto K, Kirihara J, Montgomery AB. Determination of the minimal clinically important difference scores for the Cystic Fibrosis Questionnaire-Revised respiratory symptom scale in two populations of patients with cystic fibrosis and chronic Pseudomonas aeruginosa airway infection. Chest. 2009 Jun;135(6):1610-1618. doi: 10.1378/chest.08-1190. Epub 2009 May 15.
Gold LS, Patrick DL, Hansen RN, Goss CH, Kessler L. Correspondence between lung function and symptom measures from the Cystic Fibrosis Respiratory Symptom Diary-Chronic Respiratory Infection Symptom Score (CFRSD-CRISS). J Cyst Fibros. 2019 Nov;18(6):886-893. doi: 10.1016/j.jcf.2019.05.009. Epub 2019 May 22.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
MEC-2021-0907
Identifier Type: OTHER
Identifier Source: secondary_id
V2.1, 12-08-2022
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.