TAAI Erasmus Research Initiative to Fight CF: Monitoring Inflammation in CF Lung Disease Into a New Era

NCT ID: NCT05752019

Last Updated: 2025-07-18

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

103 participants

Study Classification

OBSERVATIONAL

Study Start Date

2022-03-21

Study Completion Date

2024-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Progressive destruction of the lungs is the main cause of shortened life expectancy in people with cystic fibrosis (pwCF). Inflammation and respiratory infections play a key role in CF lung disease. Previous studies have shown that an increase in inflammatory markers predicts structural lung damage. Close monitoring of pwCF is crucial to adequately provide optimal care. Pulmonary management for pwCF involves treating infections and exacerbations and promoting exercise and mucociliary clearance to slow or prevent structural lung damage. To evaluate the treatment and incite timely interventions it is important for the pulmonary physician to be well-informed about the condition of the lungs.

The main monitoring tools in regular CF care are lung function, sputum cultures, symptom reporting and more recently imaging by chest computed tomography (CT-scan) or magnetic resonance imaging (MRI). Strangely enough, there are currently no monitoring tools used in clinics to measure inflammation in the lung, although this is a main factor for progressive lung disease.

New highly effective modulator therapy (HEMT) such as elexacaftor/tezacaftor/ivacaftor \[ETI, Kaftrio®\] is transforming CF treatment, vastly improving lung function and reducing exacerbations. Initial CFTR modulators like ivacaftor and lumacaftor/ivacaftor also improved lung function and reduced exacerbations, but studies showed that lung inflammation was still present. The long-term impact of ETI and its effect on inflammation is not yet known.

Thus, monitoring pwCF on HEMT may be different from before, as lung damage seen on chest CT will be less apparent and lung function will improve considerably, therefore not being adequate markers for subtle changes in the lungs. Thus, the focus of monitoring in the era of highly effective CFTR modulators needs to change preferably focusing on measuring lung inflammation.

An ideal monitoring tool for lung inflammation in pwCF should be non-invasive, efficient, and provide accurate and sensitive results. Currently, sputum and BAL are the most common methods for assessing inflammation, but BAL is invasive and sputum may not always be available. Exhaled breath analysis by the electronic nose (eNose) or gas chromatography-mass spectrometry (GC-MS) of volatile organic compounds (VOCs) shows promise as a non-invasive monitoring tool. Other promising markers and techniques are inflammatory markers in the blood (cytokines and micro-RNA (miRNA)) and urine.

Thus, the objective of this project is to design novel, minimally invasive monitoring techniques capable of identifying lung inflammation in pwCF undergoing highly effective CFTR modulator therapy (ETI) compared to those not using CFTR modulators. The efficacy of these innovative techniques will be evaluated and verified against inflammatory markers in sputum, spirometry, and validated symptom and quality of life scores.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Objective:

The overall aim of the study is to develop innovative minimally invasive monitoring techniques that can identify lung inflammation in pwCF when using highly effective modulators, compared to patients whom are not eligible for CFTR modulators (control group) yet.

Primary objective is to assess whether measuring VOCs with GC-MS is a sensitive method to monitor changes in lung inflammation in pwCF.

Secondary objectives are:

* To assess whether eNose is a sensitive method to monitor changes in lung inflammation in pwCF.
* To explore the usefulness of other inflammatory markers in blood and urine.

Study design: Explorative cohort study aimed to develop innovative minimally invasive monitoring techniques that can identify lung inflammation in pwCF when using highly effective CFTR modulators. (eNose, GC-MS, inflammatory markers in urine and blood), compared to a control group: pwCF not using CFTR modulators. Furthermore, the investigators will compare these techniques with inflammatory markers in induced sputum, conventional spirometry, symptom and quality of life scores.

Study population: pwCF older than 6 years of age who are eligible to start on ETI treatment and as a control group pwCF who are not on CFTR modulators,

Intervention: Subjects will be included till at least 3 study visits have taken place during treatment with ETI or for the control group: 3 consecutive regular outpatient clinic visits, which are usually 3 months apart. If the subject has not started with ETI an extra visit at baseline will be added just before start of ETI. At the study visits routine care checks will be done, such as spirometry and blood sampling for liver enzyme monitoring. The extra investigations performed at these study visits are: exhaled breath sampling, 3 extra vials of blood, urine collection, induced sputum. Lung clearance index (LCI) will be done for subjects below 18 years of age. Subjects may opt out for blood, induced sputum and urine samples, there always need to be an exhaled breath sampling with eNose and GC-MS. If the patient has a contra-indication or does not want to participate in the induced sputum procedure, the investigators will attempt to collect spontaneous expectorated sputum instead.

To limit their burden of the study for the age group 6-11, the investigators will not conduct all measurements in that age group. Resulting, in the following difference in study design between two age groups:

Patients \>12 years: At all visits there will be exhaled breath sampling, 3 extra vials of blood with a blooddraw, induced sputum, urine sample and 2 questionnaires (QoL and symptom score).

Patients \<12 years: At all visits there will be exhaled breath sampling and 1 questionnaire (symptom score) will be done by doing an interview with the child. On the last visit 2 extra vials of blood will be collected. For patients 6-18 years of age a multiple breath washout (MBW) for LCI will be scheduled at study visits.

Main study parameters/endpoints:

Primary endpoint is the comparison of VOCs, measured by GC-MS, during ETI treatment compared to control group over time during 3 different study visits.

Secondary endpoints entail the correlation of VOCs by GC-MS breath profiles/VOCs, measured by eNose, inflammatory markers in induced sputum (IL-8, free neutrophilic elastase (NE), calprotectin and myeloperoxidase, plus a predetermined cytokine panel), blood (IL-18, IL-1β, TNF, hsCRP, sCD14, calprotectin, HGMB-1, amyloid and miRNA), urine and, lung function, quality of life and symptom scores at baseline (if available) and overtime during 3 consecutive study visits. In addition, the change of VOCs by GC-MS and eNose from baseline till 3 months of ETI treatment will be investigated.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Cystic Fibrosis Lung Inflammation Lung Infection Lung Disease; Cystic Lung Diseases Lung Disease; Cystic, Congenital Inflammation Lungs Congenital Disorders Exacerbation, Symptom Infections, Bacterial

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

ETI treatment group > 12 years

CF patients older than 12, whom are eligible to receive elexacaftor/tezacaftor/ivacaftor treatment.

No interventions assigned to this group

Control group > 12 years

CF patients older than 12, whom are not eligible to receive any CFTR-modulator.

No interventions assigned to this group

ETI treatment group < 12 years

CF patients younger than 12, whom are eligible to receive elexacaftor/tezacaftor/ivacaftor treatment.

No interventions assigned to this group

Control group < 12 years

CF patients younger than 12, whom are not eligible to receive any CFTR-modulator.

No interventions assigned to this group

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

In order to be eligible to participate in this study, a subject must meet all of the following criteria:

Diagnosed with CF, either by abnormal sweat test and/or confirmed with 2 CF causing mutations found by genetic analysis, either from heel-prick screening or diagnosed later in life. Aged \>6 years (i.e. children and adults). Age appropriate written informed consent is required.

In addition, patients need to meet the criteria of one of the following study groups:

Group 1: Treated group : people with CF with mutations who are eligible to start ETI or who are already using it. This maybe patients who transition from another CFTR modulator or who are CFTR modulator naïve.

Group 2: Control group: people with CF whom are not eligible to start on any CFTR modulator yet and receive standard treatment. This group will function as controls.

Exclusion Criteria

\- People with CF who cannot follow instructions
Minimum Eligible Age

6 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Stichting TAAI

OTHER

Sponsor Role collaborator

Erasmus Medical Center

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Hettie M Janssens, MD PhD

Pediatric pulmonologist

Responsibility Role PRINCIPAL_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Erasmus MC - Sophia Children's Hospital

Rotterdam, South Holland, Netherlands

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Netherlands

References

Explore related publications, articles, or registry entries linked to this study.

De Boeck K. Cystic fibrosis in the year 2020: A disease with a new face. Acta Paediatr. 2020 May;109(5):893-899. doi: 10.1111/apa.15155. Epub 2020 Jan 22.

Reference Type BACKGROUND
PMID: 31899933 (View on PubMed)

Horati H, Janssens HM, Margaroli C, Veltman M, Stolarczyk M, Kilgore MB, Chou J, Peng L, Tiddens HAMW, Chandler JD, Tirouvanziam R, Scholte BJ. Airway profile of bioactive lipids predicts early progression of lung disease in cystic fibrosis. J Cyst Fibros. 2020 Nov;19(6):902-909. doi: 10.1016/j.jcf.2020.01.010. Epub 2020 Feb 10.

Reference Type BACKGROUND
PMID: 32057679 (View on PubMed)

Sly PD, Gangell CL, Chen L, Ware RS, Ranganathan S, Mott LS, Murray CP, Stick SM; AREST CF Investigators. Risk factors for bronchiectasis in children with cystic fibrosis. N Engl J Med. 2013 May 23;368(21):1963-70. doi: 10.1056/NEJMoa1301725.

Reference Type BACKGROUND
PMID: 23692169 (View on PubMed)

Wijker NE, Vidmar S, Grimwood K, Sly PD, Byrnes CA, Carlin JB, Cooper PJ, Robertson CF, Massie RJ, Kemner van de Corput MPC, Cheney J, Tiddens HAWM, Wainwright CE; Australasian Cystic Fibrosis Bronchoalveolar Lavage (ACFBAL) and Follow-up of the ACFBAL (CF-FAB) study groups; following investigators constitute the ACFBAL Study Investigators Group:; following investigators constitute the CF FAB Study Investigators Group:; Additional contributions: We are indebted to all current and former clinical and research staff from Queensland Children's Hospital, Brisbane:. Early markers of cystic fibrosis structural lung disease: follow-up of the ACFBAL cohort. Eur Respir J. 2020 Apr 3;55(4):1901694. doi: 10.1183/13993003.01694-2019. Print 2020 Apr.

Reference Type BACKGROUND
PMID: 31949117 (View on PubMed)

Smyth AR, Bell SC, Bojcin S, Bryon M, Duff A, Flume P, Kashirskaya N, Munck A, Ratjen F, Schwarzenberg SJ, Sermet-Gaudelus I, Southern KW, Taccetti G, Ullrich G, Wolfe S; European Cystic Fibrosis Society. European Cystic Fibrosis Society Standards of Care: Best Practice guidelines. J Cyst Fibros. 2014 May;13 Suppl 1:S23-42. doi: 10.1016/j.jcf.2014.03.010.

Reference Type BACKGROUND
PMID: 24856775 (View on PubMed)

Margaroli C, Garratt LW, Horati H, Dittrich AS, Rosenow T, Montgomery ST, Frey DL, Brown MR, Schultz C, Guglani L, Kicic A, Peng L, Scholte BJ, Mall MA, Janssens HM, Stick SM, Tirouvanziam R. Elastase Exocytosis by Airway Neutrophils Is Associated with Early Lung Damage in Children with Cystic Fibrosis. Am J Respir Crit Care Med. 2019 Apr 1;199(7):873-881. doi: 10.1164/rccm.201803-0442OC.

Reference Type BACKGROUND
PMID: 30281324 (View on PubMed)

Heijerman HGM, McKone EF, Downey DG, Van Braeckel E, Rowe SM, Tullis E, Mall MA, Welter JJ, Ramsey BW, McKee CM, Marigowda G, Moskowitz SM, Waltz D, Sosnay PR, Simard C, Ahluwalia N, Xuan F, Zhang Y, Taylor-Cousar JL, McCoy KS; VX17-445-103 Trial Group. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet. 2019 Nov 23;394(10212):1940-1948. doi: 10.1016/S0140-6736(19)32597-8. Epub 2019 Oct 31.

Reference Type BACKGROUND
PMID: 31679946 (View on PubMed)

Middleton PG, Mall MA, Drevinek P, Lands LC, McKone EF, Polineni D, Ramsey BW, Taylor-Cousar JL, Tullis E, Vermeulen F, Marigowda G, McKee CM, Moskowitz SM, Nair N, Savage J, Simard C, Tian S, Waltz D, Xuan F, Rowe SM, Jain R; VX17-445-102 Study Group. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N Engl J Med. 2019 Nov 7;381(19):1809-1819. doi: 10.1056/NEJMoa1908639. Epub 2019 Oct 31.

Reference Type BACKGROUND
PMID: 31697873 (View on PubMed)

Jarosz-Griffiths HH, Scambler T, Wong CH, Lara-Reyna S, Holbrook J, Martinon F, Savic S, Whitaker P, Etherington C, Spoletini G, Clifton I, Mehta A, McDermott MF, Peckham D. Different CFTR modulator combinations downregulate inflammation differently in cystic fibrosis. Elife. 2020 Mar 2;9:e54556. doi: 10.7554/eLife.54556.

Reference Type BACKGROUND
PMID: 32118580 (View on PubMed)

Fens N, van der Schee MP, Brinkman P, Sterk PJ. Exhaled breath analysis by electronic nose in airways disease. Established issues and key questions. Clin Exp Allergy. 2013 Jul;43(7):705-15. doi: 10.1111/cea.12052.

Reference Type BACKGROUND
PMID: 23786277 (View on PubMed)

de Vries R, Dagelet YWF, Spoor P, Snoey E, Jak PMC, Brinkman P, Dijkers E, Bootsma SK, Elskamp F, de Jongh FHC, Haarman EG, In 't Veen JCCM, Maitland-van der Zee AH, Sterk PJ. Clinical and inflammatory phenotyping by breathomics in chronic airway diseases irrespective of the diagnostic label. Eur Respir J. 2018 Jan 11;51(1):1701817. doi: 10.1183/13993003.01817-2017. Print 2018 Jan.

Reference Type BACKGROUND
PMID: 29326334 (View on PubMed)

Sagel SD, Kapsner RK, Osberg I. Induced sputum matrix metalloproteinase-9 correlates with lung function and airway inflammation in children with cystic fibrosis. Pediatr Pulmonol. 2005 Mar;39(3):224-32. doi: 10.1002/ppul.20165.

Reference Type BACKGROUND
PMID: 15635615 (View on PubMed)

Thomassen JC, Trojan T, Walz M, Vohlen C, Fink G, Rietschel E, Alejandre Alcazar MA, van Koningsbruggen-Rietschel S. Reduced neutrophil elastase inhibitor elafin and elevated transforming growth factor-beta1 are linked to inflammatory response in sputum of cystic fibrosis patients with Pseudomonas aeruginosa. ERJ Open Res. 2021 Jul 19;7(3):00636-2020. doi: 10.1183/23120541.00636-2020. eCollection 2021 Jul.

Reference Type BACKGROUND
PMID: 34291109 (View on PubMed)

Jain R, Baines A, Khan U, Wagner BD, Sagel SD. Evaluation of airway and circulating inflammatory biomarkers for cystic fibrosis drug development. J Cyst Fibros. 2021 Jan;20(1):50-56. doi: 10.1016/j.jcf.2020.06.017. Epub 2020 Jul 1.

Reference Type BACKGROUND
PMID: 32622665 (View on PubMed)

Quon BS, Ngan DA, Wilcox PG, Man SF, Sin DD. Plasma sCD14 as a biomarker to predict pulmonary exacerbations in cystic fibrosis. PLoS One. 2014 Feb 20;9(2):e89341. doi: 10.1371/journal.pone.0089341. eCollection 2014.

Reference Type BACKGROUND
PMID: 24586701 (View on PubMed)

Stachowiak Z, Wojsyk-Banaszak I, Jonczyk-Potoczna K, Narozna B, Langwinski W, Kycler Z, Sobkowiak P, Breborowicz A, Szczepankiewicz A. MiRNA Expression Profile in the Airways is Altered during Pulmonary Exacerbation in Children with Cystic Fibrosis-A Preliminary Report. J Clin Med. 2020 Jun 16;9(6):1887. doi: 10.3390/jcm9061887.

Reference Type BACKGROUND
PMID: 32560275 (View on PubMed)

Bhattacharyya S, Balakathiresan NS, Dalgard C, Gutti U, Armistead D, Jozwik C, Srivastava M, Pollard HB, Biswas R. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J Biol Chem. 2011 Apr 1;286(13):11604-15. doi: 10.1074/jbc.M110.198390. Epub 2011 Jan 31.

Reference Type BACKGROUND
PMID: 21282106 (View on PubMed)

Krause K, Kopp BT, Tazi MF, Caution K, Hamilton K, Badr A, Shrestha C, Tumin D, Hayes D Jr, Robledo-Avila F, Hall-Stoodley L, Klamer BG, Zhang X, Partida-Sanchez S, Parinandi NL, Kirkby SE, Dakhlallah D, McCoy KS, Cormet-Boyaka E, Amer AO. The expression of Mirc1/Mir17-92 cluster in sputum samples correlates with pulmonary exacerbations in cystic fibrosis patients. J Cyst Fibros. 2018 Jul;17(4):454-461. doi: 10.1016/j.jcf.2017.11.005. Epub 2017 Dec 11.

Reference Type BACKGROUND
PMID: 29241629 (View on PubMed)

Laguna TA, Wagner BD, Starcher B, Luckey Tarro HK, Mann SA, Sagel SD, Accurso FJ. Urinary desmosine: a biomarker of structural lung injury during CF pulmonary exacerbation. Pediatr Pulmonol. 2012 Sep;47(9):856-63. doi: 10.1002/ppul.22525. Epub 2012 Mar 19.

Reference Type BACKGROUND
PMID: 22431382 (View on PubMed)

Bruce MC, Poncz L, Klinger JD, Stern RC, Tomashefski JF Jr, Dearborn DG. Biochemical and pathologic evidence for proteolytic destruction of lung connective tissue in cystic fibrosis. Am Rev Respir Dis. 1985 Sep;132(3):529-35. doi: 10.1164/arrd.1985.132.3.529.

Reference Type BACKGROUND
PMID: 3898942 (View on PubMed)

Sampson AP, Spencer DA, Green CP, Piper PJ, Price JF. Leukotrienes in the sputum and urine of cystic fibrosis children. Br J Clin Pharmacol. 1990 Dec;30(6):861-9. doi: 10.1111/j.1365-2125.1990.tb05452.x.

Reference Type BACKGROUND
PMID: 1963072 (View on PubMed)

Laguna TA, Williams CB, Nunez MG, Welchlin-Bradford C, Moen CE, Reilly CS, Wendt CH. Biomarkers of inflammation in infants with cystic fibrosis. Respir Res. 2018 Jan 8;19(1):6. doi: 10.1186/s12931-017-0713-8.

Reference Type BACKGROUND
PMID: 29310632 (View on PubMed)

Martin SL, Moffitt KL, McDowell A, Greenan C, Bright-Thomas RJ, Jones AM, Webb AK, Elborn JS. Association of airway cathepsin B and S with inflammation in cystic fibrosis. Pediatr Pulmonol. 2010 Sep;45(9):860-8. doi: 10.1002/ppul.21274.

Reference Type BACKGROUND
PMID: 20632407 (View on PubMed)

Neerincx AH, Whiteson K, Phan JL, Brinkman P, Abdel-Aziz MI, Weersink EJM, Altenburg J, Majoor CJ, Maitland-van der Zee AH, Bos LDJ. Lumacaftor/ivacaftor changes the lung microbiome and metabolome in cystic fibrosis patients. ERJ Open Res. 2021 Apr 19;7(2):00731-2020. doi: 10.1183/23120541.00731-2020. eCollection 2021 Apr.

Reference Type BACKGROUND
PMID: 33898610 (View on PubMed)

Quittner AL, Modi AC, Wainwright C, Otto K, Kirihara J, Montgomery AB. Determination of the minimal clinically important difference scores for the Cystic Fibrosis Questionnaire-Revised respiratory symptom scale in two populations of patients with cystic fibrosis and chronic Pseudomonas aeruginosa airway infection. Chest. 2009 Jun;135(6):1610-1618. doi: 10.1378/chest.08-1190. Epub 2009 May 15.

Reference Type BACKGROUND
PMID: 19447923 (View on PubMed)

Gold LS, Patrick DL, Hansen RN, Goss CH, Kessler L. Correspondence between lung function and symptom measures from the Cystic Fibrosis Respiratory Symptom Diary-Chronic Respiratory Infection Symptom Score (CFRSD-CRISS). J Cyst Fibros. 2019 Nov;18(6):886-893. doi: 10.1016/j.jcf.2019.05.009. Epub 2019 May 22.

Reference Type BACKGROUND
PMID: 31126901 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

MEC-2021-0907

Identifier Type: OTHER

Identifier Source: secondary_id

V2.1, 12-08-2022

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

A CFit Study - Acute Exercise
NCT03237767 TERMINATED NA
Covid-19 Antibody Responses in Cystic Fibrosis
NCT05012306 ACTIVE_NOT_RECRUITING
COVID-19 Antibody Responses In Cystic Fibrosis
NCT05074680 ACTIVE_NOT_RECRUITING
Pulmonary Vascular Disease in CF
NCT04549077 ACTIVE_NOT_RECRUITING
Regional Monitoring of CF Lung Disease
NCT06339593 RECRUITING EARLY_PHASE1