Deep Tissue Massage in Office Workers With Chronic Low Back Pain
NCT ID: NCT05690178
Last Updated: 2023-08-09
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
40 participants
INTERVENTIONAL
2021-09-01
2021-10-20
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Specific objectives:
* Assessment of the impact of deep tissue massage on the level of pain
* Assessment of the impact of deep tissue massage on the level of disability
* Assessment of the impact of deep tissue massage on the mobility of the lumbar spine
* Assessment of the effect of deep tissue massage on the discomfort threshold of tissue compression in the area of the erector spinae muscle
* Assessment of the impact of deep tissue massage on the biophysical parameters of the soft tissues of the erector spinae muscle
* Evaluation of the impact of deep tissue massage on the bioelectric potentials of the erector spinae muscle during everyday activities and the flexion-relaxation test
Hypotheses:
* Deep tissue massage will reduce the level of pain in the lumbar spine
* Deep tissue massage will reduce the level of disability
* Deep tissue massage will increase the range of motion of the lumbar spine in all directions
* Deep tissue massage will reduce the threshold of discomfort when compressing the soft tissues of the erector spinae muscle
* Deep tissue massage will reduce muscle tone and stiffness and increase the elasticity of the back extensor muscle
* Deep tissue massage will increase the bioelectrical potentials of the erector spinae muscle while performing tests of activities of daily living
* Deep tissue massage will reduce the value of the flexion-relaxation test
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effect of Massage on Chronic Low Back Pain
NCT00371384
Effect of Massage Therapy on Muscle Fatigue
NCT03124238
The Effect of Traction Forces in People With Obesity Suffering From Chronic Low Back Pain
NCT04507074
The Effectiveness of Short-term Massage Versus Trabert Current Therapy in Patients With Low Back Pain
NCT03772093
Comparison of the Effects of Instrument Assisted Soft Tissue Mobilization Techniques Low Back Pain
NCT05623735
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Participants A total of 40 patients (30 to 60 years of age) participated in the study. All participants were characterized by the presence of chronic low back pain syndrome, performed office work for 8 hours a day and were characterized by moderate physical activity. Using randomization, participants were divided into two groups (experimental and control). The experimental group included participants who received deep tissue massage (N=20, 18 women and 2 men, average age: 40). The control group included participants who did not receive therapy (N=20, 13 women and 7 men, average age: 43).
Intervention The deep tissue massage lasted 45 minutes. The entire therapy included 4 treatments over a period of 2 weeks. The interval between treatments was 3 days. The conducted therapy included techniques for: quadratus lumborum muscle, erector spinae muscle, thoracolumbar fascia, iliopsoas muscle. All techniques were performed on both sides of the patient's body.
Research methods
The following measurement equipment was used to collect the data:
1. Electrogoniometer. Penny \& Giles strain gauge electrogoniometer with two sensors (SG150 - two-axis, Q110 - single-axis). Measurements were taken in a standing position, in accordance with the measurement methodology according to Lewandowsky. All movements of the lumbar spine (forward bending, backward bending, right bending, left bending, right rotation, left rotation) were examined. The average of the three measurements was the result of movability for a given direction. The sensors were attached to the skin using Biometrics double-sided tape. The upper sensor was placed on the Th12 spinous process (lower edge of the sensor), while the lower sensor was mounted on the base of the sacrum (upper edge).
2. Algometer. The Wagner Instruments algometer was used to assess the subjective parameter, i.e. the first discomfort threshold. In the study, the measurement site was the point located on the longissimus muscle, which is a component of the erector spinae muscle. The subjects lay in front. The pressure, detected by the algometer sensor, was applied from above and perpendicularly to the examined muscle (two fingers laterally from the L1 spinous process). Three measurements were made alternately for both sides of the examined muscle. From these measurements, mean values were calculated, which were the results for the right and left sides of the examined muscle.
3. MyotonPRO. In order to study the biophysical parameters of soft tissues, i.e. muscle tone (F) \[Hz\], stiffness (S) \[N/m\] and elasticity (D) \[no units\], the MyotonPRO apparatus was used. During the measurements, the tested person lay on his front. Measurements were made on the longissimus muscle (2 fingers lateral to the L1 spinous process). The pattern composer was programmed as follows: tapping time: 15 ms, interval: 0.8 s, mode: multiscan (5 repetitions). Measurements were made on the right and left muscles.
4. Kinesiologic electromyography (EMG). Kinesiologic electromyography was carried out with an 8-channel electromyographic system with plate electrodes (model W4X8, Biometrics Ltd). The results were recorded using DataLog Bluetooth V7.5 software (Biometrics Ltd). During the examination, six multiple-use surface electrodes (type SX230 1000) were attached with an adhesive tape, after removal of body hair froma 2 cm x 1 cm area of intact skin, disinfection of electrode surface, and wiping the skin a few times with salicylic alcohol to reduce its resistance. The reference electrode (type R230, Biometrics Ltd) was fixed at the distal end of the radius (Lister's tubercle region) with an elastic band. The examination involved lumbar segment of the longissimus muscle, iliocostalis and multifidus (both right- and left-sided bundles). The electrodes were placed according to the international guidelines published by SENIAM. The examination was painless and noninvasive and did not require subject's exposure to any additional electric stimulation. The measurement was preceded by a 10-min warm-up of the keymuscle groups. The list of determined electromyographic parameters included the amplitude of bioelectrical signal from the longissimus, iliocostalis and multifidus muscles, expressed in microvolt. Avoiding a confounding effect associated with measurement conditions, the results were normalized to a reference Maximum Voluntary Contraction (MVC) and expressed in percent. After fixation of the electrodes and preparation of the system, MVC of the longissimus, iliocostalis and multifidus were determined according to the international SENIAM guidelines. The examination started with the subject lying down in a prone position, with arms crossed under the chin, and extended legs. The EMG recordings were obtained during three active extensions of the spine, each lasting 3 seconds, with 30-second intervals in between. MVCs , corresponding to 100% neuromuscular activation of the muscles, was calculated as the mean amplitude for the three repetitions (for each muscle). At the beginning, the Flexion-Relaxation (FR) test was performed. The participant performed forward flexion of the spine and hung freely in this position for 10 seconds. During this test, the participant was asked to be as relaxed as possible. Then the participant was tested during successive tests of activities of daily living: getting up from a chair, sitting on it, lifting and lowering a 1 kg and 2 kg weight. Each test was run at an individually adjusted pace and consisted of three repetitions with 30-second rests between them. The test started at the investigator's request. While lifting and lowering the weights, the subjects kept a straight back, and each hold of the weight lasted 3 seconds and was performed on straight elbows. The result of each test is presented as the mean amplitude for three repetitions for each muscle. The results were normalized to the MVC to assess the degree of muscle involvement during various activities (standing up, sitting down, raising and lowering the roller) in relation to maximal neuromuscular activation. To ensure accurate results, the correct attachment of each electrode was rechecked before each repetition.
5. Revised Oswestry Pain Questionnaire (ODI). The degree of LBP imposed limitations in activity of daily ling (ADLs) was determined with Revised Oswestry Pain Questionnaire, also referred to as Oswestry Disability Index (ODI). The survey consisted of 10 questions, each with 6 possible responses scored from 0 to 5 points. If the respondent chose more than one answer to a given question, the one with higher score was recorded and subjected to the analysis. Maximum overall score amounted to 50 points, which corresponded to 100% disability due to lumbar pain.
6. Roland-Morris Disability Questionnaire (RMDQ). The instrument consists of 24 statements about pain and its influence on ADLs. The respondent chooses only the statements that refer to his/her ailments. Maximum overall score may vary between 0 and 24 points.
7. Visual-Analog Scale (VAS). This subjective tool is used to assess the level of pain. The participant marks the level of pain on a 10 cm scale, where 0 is no pain and 10 is the maximum pain he has ever felt.
In order to assess the impact of deep tissue massage therapy on the study population, two measurements were made over time: before and after therapy.
Ethics All measurement methods used were non-invasive and safe for health. The study was approved by the local Bioethics Committee. Each participant had the right to withdraw from the study at any stage. All collected data is anonymous and will be used only to conduct statistical analyzes for scientific purposes.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
TRIPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
DTM group
This group of participants (N=20) received Deep Tissue Massage therapy.
Deep Tissue Massage
The Deep Tissue Massage lasted 45 minutes. The entire therapy included 4 treatments over a period of 2 weeks. The interval between treatments was 3 days. The conducted therapy included techniques for: quadratus lumborum muscle, erector spinae muscle, thoracolumbar fascia, iliopsoas muscle. All techniques were performed on both sides of the patient's body.
Control group
This group of participants (N=20) did not receive any intervention.
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Deep Tissue Massage
The Deep Tissue Massage lasted 45 minutes. The entire therapy included 4 treatments over a period of 2 weeks. The interval between treatments was 3 days. The conducted therapy included techniques for: quadratus lumborum muscle, erector spinae muscle, thoracolumbar fascia, iliopsoas muscle. All techniques were performed on both sides of the patient's body.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* office worker
Exclusion Criteria
* cauda equina syndrome
* cancer
* pain or motor and sensory deficits in the lower extremities below the level of the knee
* various therapies to treat chronic low-back pain
30 Years
60 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Poznan University of Physical Education
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Michał Wendt
Principal Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Michał Wendt, PhD
Role: PRINCIPAL_INVESTIGATOR
Poznan University of Physical Education, Department of Biology and Anatomy
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Poznan University of Physical Education, Department of Biology and Anatomy
Poznan, Wielkopolska, Poland
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Willard FH, Vleeming A, Schuenke MD, Danneels L, Schleip R. The thoracolumbar fascia: anatomy, function and clinical considerations. J Anat. 2012 Dec;221(6):507-36. doi: 10.1111/j.1469-7580.2012.01511.x. Epub 2012 May 27.
Williams ACC, Craig KD. Updating the definition of pain. Pain. 2016 Nov;157(11):2420-2423. doi: 10.1097/j.pain.0000000000000613. No abstract available.
Schuenke MD, Vleeming A, Van Hoof T, Willard FH. A description of the lumbar interfascial triangle and its relation with the lateral raphe: anatomical constituents of load transfer through the lateral margin of the thoracolumbar fascia. J Anat. 2012 Dec;221(6):568-76. doi: 10.1111/j.1469-7580.2012.01517.x. Epub 2012 May 15.
Tesarz J, Hoheisel U, Wiedenhofer B, Mense S. Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience. 2011 Oct 27;194:302-8. doi: 10.1016/j.neuroscience.2011.07.066. Epub 2011 Aug 2.
Saper RB, Lemaster C, Delitto A, Sherman KJ, Herman PM, Sadikova E, Stevans J, Keosaian JE, Cerrada CJ, Femia AL, Roseen EJ, Gardiner P, Gergen Barnett K, Faulkner C, Weinberg J. Yoga, Physical Therapy, or Education for Chronic Low Back Pain: A Randomized Noninferiority Trial. Ann Intern Med. 2017 Jul 18;167(2):85-94. doi: 10.7326/M16-2579. Epub 2017 Jun 20.
Nakipoglu GF, Karagoz A, Ozgirgin N. The biomechanics of the lumbosacral region in acute and chronic low back pain patients. Pain Physician. 2008 Jul-Aug;11(4):505-11.
Marshall PWM, Schabrun S, Knox MF. Physical activity and the mediating effect of fear, depression, anxiety, and catastrophizing on pain related disability in people with chronic low back pain. PLoS One. 2017 Jul 7;12(7):e0180788. doi: 10.1371/journal.pone.0180788. eCollection 2017.
Maher C, Underwood M, Buchbinder R. Non-specific low back pain. Lancet. 2017 Feb 18;389(10070):736-747. doi: 10.1016/S0140-6736(16)30970-9. Epub 2016 Oct 11.
Le Huec JC, Thompson W, Mohsinaly Y, Barrey C, Faundez A. Sagittal balance of the spine. Eur Spine J. 2019 Sep;28(9):1889-1905. doi: 10.1007/s00586-019-06083-1. Epub 2019 Jul 22.
Koren Y, Kalichman L. Deep tissue massage: What are we talking about? J Bodyw Mov Ther. 2018 Apr;22(2):247-251. doi: 10.1016/j.jbmt.2017.05.006. Epub 2017 May 17.
Cai XY, Sun MS, Huang YP, Liu ZX, Liu CJ, Du CF, Yang Q. Biomechanical Effect of L4 -L5 Intervertebral Disc Degeneration on the Lower Lumbar Spine: A Finite Element Study. Orthop Surg. 2020 Jun;12(3):917-930. doi: 10.1111/os.12703. Epub 2020 May 31.
Bogduk N. On the definitions and physiology of back pain, referred pain, and radicular pain. Pain. 2009 Dec 15;147(1-3):17-9. doi: 10.1016/j.pain.2009.08.020. Epub 2009 Sep 16. No abstract available.
Hansen AE, Marcus NJ. Is It Time to Consider Soft Tissue as a Pain Generator in Nonspecific Low Back Pain? Pain Med. 2016 Nov;17(11):1969-1970. doi: 10.1093/pm/pnw204. Epub 2016 Aug 27. No abstract available.
Zheng Z, Wang J, Gao Q, Hou J, Ma L, Jiang C, Chen G. Therapeutic evaluation of lumbar tender point deep massage for chronic non-specific low back pain. J Tradit Chin Med. 2012 Dec;32(4):534-7. doi: 10.1016/s0254-6272(13)60066-7.
Majchrzycki M, Kocur P, Kotwicki T. Deep tissue massage and nonsteroidal anti-inflammatory drugs for low back pain: a prospective randomized trial. ScientificWorldJournal. 2014 Feb 23;2014:287597. doi: 10.1155/2014/287597. eCollection 2014.
van den Dolder PA, Roberts DL. A trial into the effectiveness of soft tissue massage in the treatment of shoulder pain. Aust J Physiother. 2003;49(3):183-8. doi: 10.1016/s0004-9514(14)60238-5.
van den Dolder PA, Ferreira PH, Refshauge KM. Effectiveness of Soft Tissue Massage for Nonspecific Shoulder Pain: Randomized Controlled Trial. Phys Ther. 2015 Nov;95(11):1467-77. doi: 10.2522/ptj.20140350. Epub 2015 May 28.
Furlan AD, Giraldo M, Baskwill A, Irvin E, Imamura M. Massage for low-back pain. Cochrane Database Syst Rev. 2015 Sep 1;2015(9):CD001929. doi: 10.1002/14651858.CD001929.pub3.
Seffrin CB, Cattano NM, Reed MA, Gardiner-Shires AM. Instrument-Assisted Soft Tissue Mobilization: A Systematic Review and Effect-Size Analysis. J Athl Train. 2019 Jul;54(7):808-821. doi: 10.4085/1062-6050-481-17. Epub 2019 Jul 19.
Best TM, Hunter R, Wilcox A, Haq F. Effectiveness of sports massage for recovery of skeletal muscle from strenuous exercise. Clin J Sport Med. 2008 Sep;18(5):446-60. doi: 10.1097/JSM.0b013e31818837a1.
Bervoets DC, Luijsterburg PA, Alessie JJ, Buijs MJ, Verhagen AP. Massage therapy has short-term benefits for people with common musculoskeletal disorders compared to no treatment: a systematic review. J Physiother. 2015 Jul;61(3):106-16. doi: 10.1016/j.jphys.2015.05.018. Epub 2015 Jun 17.
Kassolik K, Andrzejewski W, Brzozowski M, Wilk I, Gorecka-Midura L, Ostrowska B, Krzyzanowski D, Kurpas D. Comparison of massage based on the tensegrity principle and classic massage in treating chronic shoulder pain. J Manipulative Physiol Ther. 2013 Sep;36(7):418-27. doi: 10.1016/j.jmpt.2013.06.004. Epub 2013 Jul 25.
Romanowski MW, Spiritovic M, Rutkowski R, Dudek A, Samborski W, Straburzynska-Lupa A. Comparison of Deep Tissue Massage and Therapeutic Massage for Lower Back Pain, Disease Activity, and Functional Capacity of Ankylosing Spondylitis Patients: A Randomized Clinical Pilot Study. Evid Based Complement Alternat Med. 2017;2017:9894128. doi: 10.1155/2017/9894128. Epub 2017 Aug 6.
Related Links
Access external resources that provide additional context or updates about the study.
Recommendations for sensor locations in trunk or (lower) back muscles
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
DTM-CLBP-OW
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.