Validation of Existing Diabetes Risk Models in a Swedish Population

NCT ID: NCT05609266

Last Updated: 2022-12-02

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

115642 participants

Study Classification

OBSERVATIONAL

Study Start Date

1990-01-31

Study Completion Date

2020-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The goal of this observational study is to validate existing non-invasive diabetes clinical prediction models in a Swedish population. The main question it aims to answer is: how well 11 existing models will perform in predicting incident type 2 diabetes in participants from the Västerbotten Intervention programme (VIP). Participants in VIP are residents of Västerbotten that are invited for a comprehensive health screening at 30- (until 1995), 40-, 50-, and 60-years of age.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Several type 2 diabetes risk prediction models have been developed but how it will perform in a Swedish population is not known. No diabetes risk prediction model is routinely used in Sweden. The aim of this study is therefore, to validate 11 non-invasive models and to evaluate the performance to predict incident type 2 diabetes in a Swedish population. A population-based cohort from the Västerbotten Intervention programme (VIP) from 1990 to 2020 will be the validation sample. Incident type 2 diabetes within 10-years of follow-up, will be determined by oral glucose tolerance test or through self-reports. A self-administered questionnaire is completed, and anthropometric, clinical, and biochemical measures are obtained at each of the health screening visits. In the statistical analysis the overall performance of the models will be compared using the Brier score. In addition. discrimination and calibration of all the models will be evaluated. Recalibration of models will be done.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Type2diabetes

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

• At least one visit within the Västerbotten Intervention program

Exclusion Criteria

• Prevalent diabetes at first visit defined by a fasting capillary plasma glucose \>7mmol/L, a 2-hour capillary plasma glucose of ≥12.2 mmol/L or self-reported history of diabetes
Minimum Eligible Age

28 Years

Maximum Eligible Age

62 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Cambridge

OTHER

Sponsor Role collaborator

Umeå University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Olov Rolandsson, MD

Role: PRINCIPAL_INVESTIGATOR

Umeå University

References

Explore related publications, articles, or registry entries linked to this study.

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R; IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019 Nov;157:107843. doi: 10.1016/j.diabres.2019.107843. Epub 2019 Sep 10.

Reference Type BACKGROUND
PMID: 31518657 (View on PubMed)

Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018 Apr;138:271-281. doi: 10.1016/j.diabres.2018.02.023. Epub 2018 Feb 26.

Reference Type BACKGROUND
PMID: 29496507 (View on PubMed)

Li G, Zhang P, Wang J, Gregg EW, Yang W, Gong Q, Li H, Li H, Jiang Y, An Y, Shuai Y, Zhang B, Zhang J, Thompson TJ, Gerzoff RB, Roglic G, Hu Y, Bennett PH. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet. 2008 May 24;371(9626):1783-9. doi: 10.1016/S0140-6736(08)60766-7.

Reference Type BACKGROUND
PMID: 18502303 (View on PubMed)

Gillies CL, Abrams KR, Lambert PC, Cooper NJ, Sutton AJ, Hsu RT, Khunti K. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ. 2007 Feb 10;334(7588):299. doi: 10.1136/bmj.39063.689375.55. Epub 2007 Jan 19.

Reference Type BACKGROUND
PMID: 17237299 (View on PubMed)

Simmons RK, Griffin SJ, Lauritzen T, Sandbaek A. Effect of screening for type 2 diabetes on risk of cardiovascular disease and mortality: a controlled trial among 139,075 individuals diagnosed with diabetes in Denmark between 2001 and 2009. Diabetologia. 2017 Nov;60(11):2192-2199. doi: 10.1007/s00125-017-4299-y. Epub 2017 Aug 23.

Reference Type BACKGROUND
PMID: 28831539 (View on PubMed)

Herman WH, Ye W, Griffin SJ, Simmons RK, Davies MJ, Khunti K, Rutten GE, Sandbaek A, Lauritzen T, Borch-Johnsen K, Brown MB, Wareham NJ. Early Detection and Treatment of Type 2 Diabetes Reduce Cardiovascular Morbidity and Mortality: A Simulation of the Results of the Anglo-Danish-Dutch Study of Intensive Treatment in People With Screen-Detected Diabetes in Primary Care (ADDITION-Europe). Diabetes Care. 2015 Aug;38(8):1449-55. doi: 10.2337/dc14-2459. Epub 2015 May 18.

Reference Type BACKGROUND
PMID: 25986661 (View on PubMed)

Sortso C, Komkova A, Sandbaek A, Griffin SJ, Emneus M, Lauritzen T, Simmons RK. Effect of screening for type 2 diabetes on healthcare costs: a register-based study among 139,075 individuals diagnosed with diabetes in Denmark between 2001 and 2009. Diabetologia. 2018 Jun;61(6):1306-1314. doi: 10.1007/s00125-018-4594-2. Epub 2018 Mar 16.

Reference Type BACKGROUND
PMID: 29549417 (View on PubMed)

Kengne AP, Beulens JW, Peelen LM, Moons KG, van der Schouw YT, Schulze MB, Spijkerman AM, Griffin SJ, Grobbee DE, Palla L, Tormo MJ, Arriola L, Barengo NC, Barricarte A, Boeing H, Bonet C, Clavel-Chapelon F, Dartois L, Fagherazzi G, Franks PW, Huerta JM, Kaaks R, Key TJ, Khaw KT, Li K, Muhlenbruch K, Nilsson PM, Overvad K, Overvad TF, Palli D, Panico S, Quiros JR, Rolandsson O, Roswall N, Sacerdote C, Sanchez MJ, Slimani N, Tagliabue G, Tjonneland A, Tumino R, van der A DL, Forouhi NG, Sharp SJ, Langenberg C, Riboli E, Wareham NJ. Non-invasive risk scores for prediction of type 2 diabetes (EPIC-InterAct): a validation of existing models. Lancet Diabetes Endocrinol. 2014 Jan;2(1):19-29. doi: 10.1016/S2213-8587(13)70103-7. Epub 2013 Oct 8.

Reference Type BACKGROUND
PMID: 24622666 (View on PubMed)

Balkau B, Lange C, Fezeu L, Tichet J, de Lauzon-Guillain B, Czernichow S, Fumeron F, Froguel P, Vaxillaire M, Cauchi S, Ducimetiere P, Eschwege E. Predicting diabetes: clinical, biological, and genetic approaches: data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care. 2008 Oct;31(10):2056-61. doi: 10.2337/dc08-0368. Epub 2008 Aug 8.

Reference Type BACKGROUND
PMID: 18689695 (View on PubMed)

Chen L, Magliano DJ, Balkau B, Colagiuri S, Zimmet PZ, Tonkin AM, Mitchell P, Phillips PJ, Shaw JE. AUSDRISK: an Australian Type 2 Diabetes Risk Assessment Tool based on demographic, lifestyle and simple anthropometric measures. Med J Aust. 2010 Feb 15;192(4):197-202. doi: 10.5694/j.1326-5377.2010.tb03507.x.

Reference Type BACKGROUND
PMID: 20170456 (View on PubMed)

Griffin SJ, Little PS, Hales CN, Kinmonth AL, Wareham NJ. Diabetes risk score: towards earlier detection of type 2 diabetes in general practice. Diabetes Metab Res Rev. 2000 May-Jun;16(3):164-71. doi: 10.1002/1520-7560(200005/06)16:33.0.co;2-r.

Reference Type BACKGROUND
PMID: 10867715 (View on PubMed)

Lindstrom J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care. 2003 Mar;26(3):725-31. doi: 10.2337/diacare.26.3.725.

Reference Type BACKGROUND
PMID: 12610029 (View on PubMed)

Hippisley-Cox J, Coupland C, Robson J, Sheikh A, Brindle P. Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore. BMJ. 2009 Mar 17;338:b880. doi: 10.1136/bmj.b880.

Reference Type BACKGROUND
PMID: 19297312 (View on PubMed)

Rahman M, Simmons RK, Harding AH, Wareham NJ, Griffin SJ. A simple risk score identifies individuals at high risk of developing Type 2 diabetes: a prospective cohort study. Fam Pract. 2008 Jun;25(3):191-6. doi: 10.1093/fampra/cmn024. Epub 2008 May 30.

Reference Type BACKGROUND
PMID: 18515811 (View on PubMed)

Rosella LC, Manuel DG, Burchill C, Stukel TA; PHIAT-DM team. A population-based risk algorithm for the development of diabetes: development and validation of the Diabetes Population Risk Tool (DPoRT). J Epidemiol Community Health. 2011 Jul;65(7):613-20. doi: 10.1136/jech.2009.102244. Epub 2010 Jun 1.

Reference Type BACKGROUND
PMID: 20515896 (View on PubMed)

Schmidt MI, Duncan BB, Bang H, Pankow JS, Ballantyne CM, Golden SH, Folsom AR, Chambless LE; Atherosclerosis Risk in Communities Investigators. Identifying individuals at high risk for diabetes: The Atherosclerosis Risk in Communities study. Diabetes Care. 2005 Aug;28(8):2013-8. doi: 10.2337/diacare.28.8.2013.

Reference Type BACKGROUND
PMID: 16043747 (View on PubMed)

Schulze MB, Hoffmann K, Boeing H, Linseisen J, Rohrmann S, Mohlig M, Pfeiffer AF, Spranger J, Thamer C, Haring HU, Fritsche A, Joost HG. An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes. Diabetes Care. 2007 Mar;30(3):510-5. doi: 10.2337/dc06-2089.

Reference Type BACKGROUND
PMID: 17327313 (View on PubMed)

Abbasi A, Peelen LM, Corpeleijn E, van der Schouw YT, Stolk RP, Spijkerman AM, van der A DL, Moons KG, Navis G, Bakker SJ, Beulens JW. Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study. BMJ. 2012 Sep 18;345:e5900. doi: 10.1136/bmj.e5900.

Reference Type BACKGROUND
PMID: 22990994 (View on PubMed)

Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D'Agostino RB Sr. Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med. 2007 May 28;167(10):1068-74. doi: 10.1001/archinte.167.10.1068.

Reference Type BACKGROUND
PMID: 17533210 (View on PubMed)

Kahn HS, Cheng YJ, Thompson TJ, Imperatore G, Gregg EW. Two risk-scoring systems for predicting incident diabetes mellitus in U.S. adults age 45 to 64 years. Ann Intern Med. 2009 Jun 2;150(11):741-51. doi: 10.7326/0003-4819-150-11-200906020-00002.

Reference Type BACKGROUND
PMID: 19487709 (View on PubMed)

Collins GS, Mallett S, Omar O, Yu LM. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting. BMC Med. 2011 Sep 8;9:103. doi: 10.1186/1741-7015-9-103.

Reference Type BACKGROUND
PMID: 21902820 (View on PubMed)

Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med. 2015 Jan 6;13:1. doi: 10.1186/s12916-014-0241-z.

Reference Type BACKGROUND
PMID: 25563062 (View on PubMed)

Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, Vickers AJ, Ransohoff DF, Collins GS. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015 Jan 6;162(1):W1-73. doi: 10.7326/M14-0698.

Reference Type BACKGROUND
PMID: 25560730 (View on PubMed)

Norberg M, Wall S, Boman K, Weinehall L. The Vasterbotten Intervention Programme: background, design and implications. Glob Health Action. 2010 Mar 22;3. doi: 10.3402/gha.v3i0.4643.

Reference Type BACKGROUND
PMID: 20339479 (View on PubMed)

Norberg M, Blomstedt Y, Lonnberg G, Nystrom L, Stenlund H, Wall S, Weinehall L. Community participation and sustainability--evidence over 25 years in the Vasterbotten Intervention Programme. Glob Health Action. 2012 Dec 17;5:1-9. doi: 10.3402/gha.v5i0.19166.

Reference Type BACKGROUND
PMID: 23528041 (View on PubMed)

Feldman AL, Griffin SJ, Fharm E, Norberg M, Wennberg P, Weinehall L, Rolandsson O. Screening for type 2 diabetes: do screen-detected cases fare better? Diabetologia. 2017 Nov;60(11):2200-2209. doi: 10.1007/s00125-017-4402-4. Epub 2017 Aug 23.

Reference Type BACKGROUND
PMID: 28831538 (View on PubMed)

Chen Y, Copeland WK, Vedanthan R, Grant E, Lee JE, Gu D, Gupta PC, Ramadas K, Inoue M, Tsugane S, Tamakoshi A, Gao YT, Yuan JM, Shu XO, Ozasa K, Tsuji I, Kakizaki M, Tanaka H, Nishino Y, Chen CJ, Wang R, Yoo KY, Ahn YO, Ahsan H, Pan WH, Chen CS, Pednekar MS, Sauvaget C, Sasazuki S, Yang G, Koh WP, Xiang YB, Ohishi W, Watanabe T, Sugawara Y, Matsuo K, You SL, Park SK, Kim DH, Parvez F, Chuang SY, Ge W, Rolland B, McLerran D, Sinha R, Thornquist M, Kang D, Feng Z, Boffetta P, Zheng W, He J, Potter JD. Association between body mass index and cardiovascular disease mortality in east Asians and south Asians: pooled analysis of prospective data from the Asia Cohort Consortium. BMJ. 2013 Oct 1;347:f5446. doi: 10.1136/bmj.f5446.

Reference Type BACKGROUND
PMID: 24473060 (View on PubMed)

Lee KJ, Carlin JB. Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation. Am J Epidemiol. 2010 Mar 1;171(5):624-32. doi: 10.1093/aje/kwp425. Epub 2010 Jan 27.

Reference Type BACKGROUND
PMID: 20106935 (View on PubMed)

White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. Stat Med. 2011 Feb 20;30(4):377-99. doi: 10.1002/sim.4067. Epub 2010 Nov 30.

Reference Type BACKGROUND
PMID: 21225900 (View on PubMed)

Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010 Jan;21(1):128-38. doi: 10.1097/EDE.0b013e3181c30fb2.

Reference Type BACKGROUND
PMID: 20010215 (View on PubMed)

Related Links

Access external resources that provide additional context or updates about the study.

https://apps.who.int/iris/handle/10665/66040

WHO Definition, diagnosis and classification of diabetes mellitus and its complications

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

2022-VIPRisk_Valexist

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Diabetes Prevention Program
NCT00004992 COMPLETED PHASE3
Diabetes Prevention In Estrie
NCT00991549 COMPLETED NA
Prevention With the Health and Lifestyle Tool
NCT05006508 ACTIVE_NOT_RECRUITING NA
Prevention and Choice for Type 2
NCT06377020 COMPLETED NA
Evaluation of Lifestyle Tool in Type 2 Diabetes
NCT05679115 ACTIVE_NOT_RECRUITING NA