Repetitive Transcranial Magnetic Stimulation (rTMS) on Neurogenic Overactive Bladder in Stroke
NCT ID: NCT05557175
Last Updated: 2024-05-03
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
60 participants
INTERVENTIONAL
2022-11-09
2024-01-10
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Objectives: Evaluate the effects of active-rTMS compared to sham-rTMS among stroke survivors with NOAB, the interventions' cost-effectiveness and explore their experiences qualitatively.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
rTMS in Overactive Bladder
NCT06198439
Augmented Efficacy of rPMS on the rTMS on Upper Limb Function in Patients With Stroke
NCT05053711
The Effect of Repetative Transcranial Magnetic Stimulation Therapy for Stroke Patients
NCT05738863
Effects of the Quantity of Repetitive Transcranial Magnetic Stimulation(rTMS) on the Recovery After Stroke
NCT01311271
the Safety and Effectiveness of Precise rTMS Based on Neuroimaging in the Treatment of Adolescent Depression With Anhedoniadepression With Anhedonia
NCT05544071
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Objectives: Evaluate the effects of active-rTMS compared to sham-rTMS among stroke survivors with NOAB, the interventions' cost-effectiveness and explore their experiences qualitatively.
Hypothesis: Active-rTMS will reduce NOAB symptom severity for stroke survivors, interventions' cost and assist in gaining insight into the NOAB patients' experiences.
Methods: This study will be a randomised-sham-controlled, double-blinded trial, with embedded qualitative and cost-effectiveness studies. Snowball-convenience sampling technique and computer-generated randomisation will be adopted to recruit 30 participants into active-rTMS and sham-rTMS groups each. Active-rTMS participants will receive a continuous 1 pulse per second 1200 pulses of low-frequency rTMS to the pelvic floor muscle representation in the contralesional primary motor cortex (M1) for 20 minutes thrice weekly. Sham-rTMS participants will receive the same parameters as the active-rTMS group, however, the coil will be rotated 90° away from the scalp. Fifteen active-rTMS participants will be invited for 45-60 minutes focus group discussions. The primary and secondary outcomes will be urinary incontinence severity and quality of life evaluated using the Overactive Bladder Symptom Score and Incontinence-Quality of life Questionnaire, respectively. Quality-adjusted life-years (QALY) will be the cost-effectiveness outcome. The EQ-5D-5L responses will estimate the gain or loss of QALY. A follow-up assessment will be conducted one-months post-intervention. The Client Service Receipt Inventory (CSRI) will be used to collect information on the whole range of services and support required by the study participants.
Statistical analysis: Normality will be evaluated using Shapiro-Wilk test. To determine active-rTMS and sham-rTMS group differences, between-groups analysis of covariance (ANCOVA) will be conducted using R software. Bonferroni correction will be applied for multiple comparisons. Thematic analysis will be used for analysing the qualitative data. For the cost-effectiveness analysis, the unadjusted mean costs and cost differences between active-rTMS and the sham-rTMS group will be calculated.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Active rTMS group
Repetitive transcranial magnetic stimulation
The active rTMS group will receive a 1 Hz inhibitory low-frequency rTMS protocol hotspot of the contra-lessional primary motor cortex (M1), will deliver a continuous pulse of 1 pulse per second totalling 1200 pulses of 80% active motor threshold stimulation. The duration of the stimulation will last for 20 minutes thrice a week for four weeks (12 sessions). The motor threshold will be the minimum single-pulse TMS intensity necessary to elicit a motor-evoked potential greater than 50μV in more than 5 out of 10 consecutive trials. The standard 70 mm figure-of-eight air-cooled coil handle (MagPro) will be held at right angle to the skull for effective M1 stimulation. The participants in the active rTMS groups will receive a subthreshold stimulation intensity for muscle contraction with no painful peripheral sensation
Sham rTMS group
Sham rTMS
The sham rTMS will be applied using the same parameters as the active rTMS but the coil will be rotated 90° away from the scalp so that minimal or no flow of current will be induced
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Repetitive transcranial magnetic stimulation
The active rTMS group will receive a 1 Hz inhibitory low-frequency rTMS protocol hotspot of the contra-lessional primary motor cortex (M1), will deliver a continuous pulse of 1 pulse per second totalling 1200 pulses of 80% active motor threshold stimulation. The duration of the stimulation will last for 20 minutes thrice a week for four weeks (12 sessions). The motor threshold will be the minimum single-pulse TMS intensity necessary to elicit a motor-evoked potential greater than 50μV in more than 5 out of 10 consecutive trials. The standard 70 mm figure-of-eight air-cooled coil handle (MagPro) will be held at right angle to the skull for effective M1 stimulation. The participants in the active rTMS groups will receive a subthreshold stimulation intensity for muscle contraction with no painful peripheral sensation
Sham rTMS
The sham rTMS will be applied using the same parameters as the active rTMS but the coil will be rotated 90° away from the scalp so that minimal or no flow of current will be induced
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Urodynamic findings confirming detrusor overactivity
* Experience moderate (OABSS scores: 6-11 points) to severe NOAB (OABSS scores: 12 points and above)
* Obtain a Mini-Mental State Examination (MMSE) score of ≥ 24
* Be willing to be randomized
Exclusion Criteria
* Pregnancy or less than six months postpartum stage
* Patients with a family history of epilepsy or seizures
* Patients taking tricyclic antidepressants or neuroepileptics
* Participation in any other research project related to urinary incontinence; contra-indicated to MRI, urologic cancer, prostatic pathology, severe pelvic pain, six weeks post-surgery and non-neurogenic bladder
18 Years
80 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
The Hong Kong Polytechnic University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
The Hong Kong Polytechnic University
Hong Kong, , Hong Kong
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Przydacz M, Denys P, Corcos J. What do we know about neurogenic bladder prevalence and management in developing countries and emerging regions of the world? Ann Phys Rehabil Med. 2017 Sep;60(5):341-346. doi: 10.1016/j.rehab.2017.02.008. Epub 2017 Jun 13.
Brittain KR, Perry SI, Peet SM, Shaw C, Dallosso H, Assassa RP, Williams K, Jagger C, Potter JF, Castleden CM. Prevalence and impact of urinary symptoms among community-dwelling stroke survivors. Stroke. 2000 Apr;31(4):886-91. doi: 10.1161/01.str.31.4.886.
Manack A, Motsko SP, Haag-Molkenteller C, Dmochowski RR, Goehring EL Jr, Nguyen-Khoa BA, Jones JK. Epidemiology and healthcare utilization of neurogenic bladder patients in a US claims database. Neurourol Urodyn. 2011 Mar;30(3):395-401. doi: 10.1002/nau.21003. Epub 2010 Sep 29.
Takahashi S, Kitamura T. Overactive bladder: magnetic versus electrical stimulation. Curr Opin Obstet Gynecol. 2003 Oct;15(5):429-33. doi: 10.1097/00001703-200310000-00012.
Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007 Jul 19;55(2):187-99. doi: 10.1016/j.neuron.2007.06.026.
Nardone R, Versace V, Sebastianelli L, Brigo F, Golaszewski S, Christova M, Saltuari L, Trinka E. Transcranial magnetic stimulation and bladder function: A systematic review. Clin Neurophysiol. 2019 Nov;130(11):2032-2037. doi: 10.1016/j.clinph.2019.08.020. Epub 2019 Sep 3.
Klomjai W, Katz R, Lackmy-Vallee A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 2015 Sep;58(4):208-213. doi: 10.1016/j.rehab.2015.05.005. Epub 2015 Aug 28.
Yani MS, Wondolowski JH, Eckel SP, Kulig K, Fisher BE, Gordon JE, Kutch JJ. Distributed representation of pelvic floor muscles in human motor cortex. Sci Rep. 2018 May 8;8(1):7213. doi: 10.1038/s41598-018-25705-0.
Griffiths D. Neural control of micturition in humans: a working model. Nat Rev Urol. 2015 Dec;12(12):695-705. doi: 10.1038/nrurol.2015.266. Epub 2015 Dec 1.
Griffiths D, Clarkson B, Tadic SD, Resnick NM. Brain Mechanisms Underlying Urge Incontinence and its Response to Pelvic Floor Muscle Training. J Urol. 2015 Sep;194(3):708-15. doi: 10.1016/j.juro.2015.03.102. Epub 2015 Mar 28.
Lefaucheur JP, Andre-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipovic SR, Hummel FC, Jaaskelainen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Padberg F, Poulet E, Rossi S, Rossini PM, Rothwell JC, Schonfeldt-Lecuona C, Siebner HR, Slotema CW, Stagg CJ, Valls-Sole J, Ziemann U, Paulus W, Garcia-Larrea L. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014 Nov;125(11):2150-2206. doi: 10.1016/j.clinph.2014.05.021. Epub 2014 Jun 5.
Kannan P, Cheung KK, Lau BW, Li L, Chen H, Sun F. A mixed-methods study to evaluate the effectiveness and cost-effectiveness of aerobic exercise for primary dysmenorrhea: A study protocol. PLoS One. 2021 Aug 16;16(8):e0256263. doi: 10.1371/journal.pone.0256263. eCollection 2021.
Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007 May;39(2):175-91. doi: 10.3758/bf03193146.
Yani MS, Fenske SJ, Rodriguez LV, Kutch JJ. Motor cortical neuromodulation of pelvic floor muscle tone: Potential implications for the treatment of urologic conditions. Neurourol Urodyn. 2019 Aug;38(6):1517-1523. doi: 10.1002/nau.24014. Epub 2019 May 1.
Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Screening questionnaire before TMS: an update. Clin Neurophysiol. 2011 Aug;122(8):1686. doi: 10.1016/j.clinph.2010.12.037. Epub 2011 Jan 11. No abstract available.
Xu L, Fu C, Zhang Q, Xiong F, Peng L, Liang Z, Chen L, He C, Wei Q. Efficacy of biofeedback, repetitive transcranial magnetic stimulation and pelvic floor muscle training for female neurogenic bladder dysfunction after spinal cord injury: a study protocol for a randomised controlled trial. BMJ Open. 2020 Aug 5;10(8):e034582. doi: 10.1136/bmjopen-2019-034582.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Ref No. ZVSV
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.