Lymphaticovenous Anastomosis as Treatment for Lymphedema
NCT ID: NCT05441943
Last Updated: 2024-03-05
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
ACTIVE_NOT_RECRUITING
NA
10 participants
INTERVENTIONAL
2022-05-11
2026-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Lymphovenous Anastomosis for Breast Cancer Lymphedema
NCT06302361
LymphoVenous Anastomosis to Prevent Breast Cancer Related Lymphedema
NCT05601037
A Prospective Observational Study of Lymphedema in Breast Cancer With Axillary Lymph Node Dissection
NCT01969253
Can ILR Reduce the Risk of Arm Lymphedema?
NCT05742945
Treatment of Breast Cancer Related Lymphedema With Cell-assisted Lipotransfer
NCT02592213
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Breast-cancer related lymphedema is a life-disabling side-effect of breast cancer treatment, affecting more than 1 in every 5 patients. With breast-cancer being the most common cancer diagnosis in women, affecting up to 2.3 million new cases globally, and with a generally high survival rate of 80% or higher in developed countries, the number of breast-cancer survivors with long-term sequela is significant. Compression garments have been considered the standard treatment and rehabilitation for lymphedema. Some of the disadvantages with these treatments include variability in patient compliance, clinical effect and lack of statistical significant results. Therefore, the rehabilitation and treatment options for lymphedema are in high demand, affecting patients physical and mental health.
Lymphovenous anastomosis (LVA) surgery is an attempt to re-establish the lymphatic flow, utilizing the patient's own lymphatic- and venous vessels. Surgical treatment seems effective in selective patient groups, but systematic studies for this are lacking. It is based on this lack of knowledge of patient characteristics and preoperative planning that the project's hypothesis and idea was formed.
Indocyanine green (ICG) lymphography is commonly used for identification of lymphatic vessels pre-operatively, and is considered superior to other modalities. However, until recently, the identification of adjacent venoles has remained a challenge. Ultra high frequency ultrasound may have solved the challenge of identifying the small venoles prior to surgery. The combined use of ICG lymphography and ultra high frequency ultrasound may be the key to optimise patient selection and pre-operative planning of lymphovenous anastomosis surgery.
METHOD
This study is designed as a pilot study with a planned inclusion of 10 patients with a 3 months follow-up period.
The inclusion of patients, the surgical procedure and 3 months follow-up evaluation will take place at the Department of Plastic Surgery Odense University Hospital (OUH), Denmark.
The ICG lymphography is performed by injecting ICG subcutaneously, and used for visualization of the superficial lymphatics for preoperative planning. During real-time visualization, lymphatic vessels are drawn up on the patients arm using a permanent marker.
Ultra high frequency ultrasound (\>30MHz) has the ability to visualize small, superficial anatomical layers. Using this ultra high frequency ultrasound (70MHz), following the mapped lymphatic vessels, venous vessels are found nearby and likewise mapped for anastomosis.
The number of LVA anastomosis sites is set to a minimum of two sites per extremity. The number of mapped lymphatics vessels and venoles are compared to the number identified during surgery and recorded.
Prior to and 3 months after surgery, patients are seen for objective measures of upper extremity volume, body composition, L-Dex score of the affected arm and health-related quality-of-life, in addition to ICG lymphography.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Lymphovenous anastomosis surgery
Lymphovenous anastomosis surgery with pre-operative planning using ICG lymphography and ultra high frequency ultrasound.
Lymphovenous anastomosis
Pre-operative planning prior to lymphovenous anastomosis using ICG lymphography and ultra high frequency ultrasound for mapping of applicable vessels.
During surgery, mapped vessels are freely dissected and anastomosed.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Lymphovenous anastomosis
Pre-operative planning prior to lymphovenous anastomosis using ICG lymphography and ultra high frequency ultrasound for mapping of applicable vessels.
During surgery, mapped vessels are freely dissected and anastomosed.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Iatrogenic lymphedema following treatment for breast cancer in upper extremity
* Possible to obtain informed consent
* Age\>18
Exclusion Criteria
* Smoker
* Untreated or uncontrolled primary cancer
* No applicable lymphatic vessels identified, using ICG lymphangiography
* No applicable venous vessels identified using ultra high frequency ultrasound
18 Years
FEMALE
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Danish Cancer Society
OTHER
Odense University Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Caroline Lilja
Principal Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Caroline Lilja, MD
Role: PRINCIPAL_INVESTIGATOR
Department of Plastic Surgery at Odense University Hospital
Jens Ahm Sørensen, MD, Prof, PhD
Role: STUDY_CHAIR
Department of Plastic Surgery at Odense University Hospital
Jørn Bo Thomsen, MD, Prof, PhD
Role: STUDY_CHAIR
Department of Plastic Surgery at Odense University Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Department of Plastic Surgery, Odense University Hospital
Odense, Region Syddanmark, Denmark
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Armer JM, Ballman KV, McCall L, Armer NC, Sun Y, Udmuangpia T, Hunt KK, Mittendorf EA, Byrd DR, Julian TB, Boughey JC. Lymphedema symptoms and limb measurement changes in breast cancer survivors treated with neoadjuvant chemotherapy and axillary dissection: results of American College of Surgeons Oncology Group (ACOSOG) Z1071 (Alliance) substudy. Support Care Cancer. 2019 Feb;27(2):495-503. doi: 10.1007/s00520-018-4334-7. Epub 2018 Jul 6.
DiSipio T, Rye S, Newman B, Hayes S. Incidence of unilateral arm lymphoedema after breast cancer: a systematic review and meta-analysis. Lancet Oncol. 2013 May;14(6):500-15. doi: 10.1016/S1470-2045(13)70076-7. Epub 2013 Mar 27.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4.
Maajani K, Jalali A, Alipour S, Khodadost M, Tohidinik HR, Yazdani K. The Global and Regional Survival Rate of Women With Breast Cancer: A Systematic Review and Meta-analysis. Clin Breast Cancer. 2019 Jun;19(3):165-177. doi: 10.1016/j.clbc.2019.01.006. Epub 2019 Jan 29.
Markkula SP, Leung N, Allen VB, Furniss D. Surgical interventions for the prevention or treatment of lymphoedema after breast cancer treatment. Cochrane Database Syst Rev. 2019 Feb 19;2(2):CD011433. doi: 10.1002/14651858.CD011433.pub2.
Drobot A, Bez M, Abu Shakra I, Merei F, Khatib K, Bickel A, Ganam S, Bogouslavski G, Karra N, Mahran B, Kassis W, Kogan L, Drobot D, Weiss M, Koshima I, Kakiashvili E. Microsurgery for management of primary and secondary lymphedema. J Vasc Surg Venous Lymphat Disord. 2021 Jan;9(1):226-233.e1. doi: 10.1016/j.jvsv.2020.04.025. Epub 2020 May 21.
Seki Y, Kajikawa A, Yamamoto T, Takeuchi T, Terashima T, Kurogi N. The dynamic-lymphaticovenular anastomosis method for breast cancer treatment-related lymphedema: Creation of functional lymphaticovenular anastomoses with use of preoperative dynamic ultrasonography. J Plast Reconstr Aesthet Surg. 2019 Jan;72(1):62-70. doi: 10.1016/j.bjps.2018.09.005. Epub 2018 Sep 20.
Brahma B, Putri RI, Reuwpassa JO, Tuti Y, Alifian MF, Sofyan RF, Iskandar I, Yamamoto T. Lymphaticovenular Anastomosis in Breast Cancer Treatment-Related Lymphedema: A Short-Term Clinicopathological Analysis from Indonesia. J Reconstr Microsurg. 2021 Oct;37(8):643-654. doi: 10.1055/s-0041-1723940. Epub 2021 Mar 1.
Wolfs JAGN, de Joode LGEH, van der Hulst RRWJ, Qiu SS. Correlation between patency and clinical improvement after lymphaticovenous anastomosis (LVA) in breast cancer-related lymphedema: 12-month follow-up. Breast Cancer Res Treat. 2020 Jan;179(1):131-138. doi: 10.1007/s10549-019-05450-2. Epub 2019 Sep 21.
Jorgensen MG, Toyserkani NM, Hansen FG, Bygum A, Sorensen JA. The impact of lymphedema on health-related quality of life up to 10 years after breast cancer treatment. NPJ Breast Cancer. 2021 Jun 1;7(1):70. doi: 10.1038/s41523-021-00276-y.
Kibar S, Dalyan Aras M, Unsal Delialioglu S. The risk factors and prevalence of upper extremity impairments and an analysis of effects of lymphoedema and other impairments on the quality of life of breast cancer patients. Eur J Cancer Care (Engl). 2017 Jul;26(4). doi: 10.1111/ecc.12433. Epub 2016 Jan 13.
Ahmed RL, Prizment A, Lazovich D, Schmitz KH, Folsom AR. Lymphedema and quality of life in breast cancer survivors: the Iowa Women's Health Study. J Clin Oncol. 2008 Dec 10;26(35):5689-96. doi: 10.1200/JCO.2008.16.4731. Epub 2008 Nov 10.
Gillespie TC, Sayegh HE, Brunelle CL, Daniell KM, Taghian AG. Breast cancer-related lymphedema: risk factors, precautionary measures, and treatments. Gland Surg. 2018 Aug;7(4):379-403. doi: 10.21037/gs.2017.11.04.
Chang EI, Skoracki RJ, Chang DW. Lymphovenous Anastomosis Bypass Surgery. Semin Plast Surg. 2018 Feb;32(1):22-27. doi: 10.1055/s-0038-1636510. Epub 2018 Apr 9.
Mihara M, Hara H, Araki J, Kikuchi K, Narushima M, Yamamoto T, Iida T, Yoshimatsu H, Murai N, Mitsui K, Okitsu T, Koshima I. Indocyanine green (ICG) lymphography is superior to lymphoscintigraphy for diagnostic imaging of early lymphedema of the upper limbs. PLoS One. 2012;7(6):e38182. doi: 10.1371/journal.pone.0038182. Epub 2012 Jun 4.
Hayashi A, Giacalone G, Yamamoto T, Belva F, Visconti G, Hayashi N, Handa M, Yoshimatsu H, Salgarello M. Ultra High-frequency Ultrasonographic Imaging with 70 MHz Scanner for Visualization of the Lymphatic Vessels. Plast Reconstr Surg Glob Open. 2019 Jan 22;7(1):e2086. doi: 10.1097/GOX.0000000000002086. eCollection 2019 Jan.
Visconti G, Bianchi A, Hayashi A, Salgarello M. Ultra-high frequency ultrasound preoperative planning of the rerouting method for lymphaticovenular anastomosis in incisions devoid of vein. Microsurgery. 2020 Sep;40(6):717-718. doi: 10.1002/micr.30600. Epub 2020 May 5. No abstract available.
Hayashi A, Visconti G, Giacalone G, Hayashi N, Yoshimatsu H. Recent Advances in Ultrasound Technology: Ultra-High Frequency Ultrasound for Reconstructive Supermicrosurgery. J Reconstr Microsurg. 2022 Mar;38(3):193-199. doi: 10.1055/s-0041-1740129. Epub 2021 Dec 17.
Jorgensen MG, Toyserkani NM, Hansen FCG, Thomsen JB, Sorensen JA. Prospective Validation of Indocyanine Green Lymphangiography Staging of Breast Cancer-Related Lymphedema. Cancers (Basel). 2021 Mar 26;13(7):1540. doi: 10.3390/cancers13071540.
Jorgensen MG, Hermann AP, Madsen AR, Christensen S, Sorensen JA. Indocyanine green lymphangiography is superior to clinical staging in breast cancer-related lymphedema. Sci Rep. 2021 Oct 26;11(1):21103. doi: 10.1038/s41598-021-00396-2.
Gupta N, Verhey EM, Torres-Guzman RA, Avila FR, Jorge Forte A, Rebecca AM, Teven CM. Outcomes of Lymphovenous Anastomosis for Upper Extremity Lymphedema: A Systematic Review. Plast Reconstr Surg Glob Open. 2021 Aug 25;9(8):e3770. doi: 10.1097/GOX.0000000000003770. eCollection 2021 Aug.
Visconti G, Hayashi A, Tartaglione G, Yamamoto T, Bianchi A, Salgarello M. Preoperative planning of lymphaticovenular anastomosis in patients with iodine allergy: A multicentric experience. J Plast Reconstr Aesthet Surg. 2020 Apr;73(4):783-808. doi: 10.1016/j.bjps.2019.11.020. Epub 2019 Nov 29. No abstract available.
Gallagher KK, Lopez M, Iles K, Kugar M. Surgical Approach to Lymphedema Reduction. Curr Oncol Rep. 2020 Jul 28;22(10):97. doi: 10.1007/s11912-020-00961-4.
Ogata F, Narushima M, Mihara M, Azuma R, Morimoto Y, Koshima I. Intraoperative lymphography using indocyanine green dye for near-infrared fluorescence labeling in lymphedema. Ann Plast Surg. 2007 Aug;59(2):180-4. doi: 10.1097/01.sap.0000253341.70866.54.
Klassen AF, Tsangaris E, Kaur MN, Poulsen L, Beelen LM, Jacobsen AL, Jorgensen MG, Sorensen JA, Vasilic D, Dayan J, Mehrara B, Pusic AL. Development and Psychometric Validation of a Patient-Reported Outcome Measure for Arm Lymphedema: The LYMPH-Q Upper Extremity Module. Ann Surg Oncol. 2021 Sep;28(9):5166-5182. doi: 10.1245/s10434-021-09887-y. Epub 2021 Jul 5.
Coroneos CJ, Wong FC, DeSnyder SM, Shaitelman SF, Schaverien MV. Correlation of L-Dex Bioimpedance Spectroscopy with Limb Volume and Lymphatic Function in Lymphedema. Lymphat Res Biol. 2019 Jun;17(3):301-307. doi: 10.1089/lrb.2018.0028. Epub 2018 Nov 2.
Mastick J, Smoot BJ, Paul SM, Kober KM, Hamolsky D, Madden LK, Conley YP, Dixit N, Hammer MJ, Fu MR, Miaskowski C. A Comparison of Supine Versus Stand-on Bioimpedance Devices to Assess Breast Cancer-Related Lymphedema. Lymphat Res Biol. 2021 Dec;19(6):553-561. doi: 10.1089/lrb.2020.0058. Epub 2021 Feb 9.
Tang NSJ, Ramakrishnan A, Shayan R. Quality-of-life outcomes after operative management of primary and secondary lymphoedema: a systematic review. ANZ J Surg. 2021 Dec;91(12):2624-2636. doi: 10.1111/ans.16764. Epub 2021 Apr 6.
Karafa M, Karafova A, Szuba A. The effect of different compression pressure in therapy of secondary upper extremity lymphedema in women after breast cancer surgery. Lymphology. 2018;51(1):28-37.
Gasteratos K, Morsi-Yeroyannis A, Vlachopoulos NC, Spyropoulou GA, Del Corral G, Chaiyasate K. Microsurgical techniques in the treatment of breast cancer-related lymphedema: a systematic review of efficacy and patient outcomes. Breast Cancer. 2021 Sep;28(5):1002-1015. doi: 10.1007/s12282-021-01274-5. Epub 2021 Jul 12.
Carl HM, Walia G, Bello R, Clarke-Pearson E, Hassanein AH, Cho B, Pedreira R, Sacks JM. Systematic Review of the Surgical Treatment of Extremity Lymphedema. J Reconstr Microsurg. 2017 Jul;33(6):412-425. doi: 10.1055/s-0037-1599100. Epub 2017 Feb 24.
Fu MR, Cleland CM, Guth AA, Kayal M, Haber J, Cartwright F, Kleinman R, Kang Y, Scagliola J, Axelrod D. L-dex ratio in detecting breast cancer-related lymphedema: reliability, sensitivity, and specificity. Lymphology. 2013 Jun;46(2):85-96.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol
Related Links
Access external resources that provide additional context or updates about the study.
Will, P.A., Wan, Z., Seide, S.E. et al. Supermicrosurgical treatment for lymphedema: a systematic review and network meta-analysis protocol. Syst Rev 11, 18 (2022). https://doi.org/10.1186/s13643-022-01885-9
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
S-20210169
Identifier Type: OTHER
Identifier Source: secondary_id
21/59848
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.