Transcranial Pulse Stimulation Open-label Self-controlled Trial For Mild Neurocognitive Disorder

NCT ID: NCT05331560

Last Updated: 2022-04-15

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Clinical Phase

NA

Total Enrollment

20 participants

Study Classification

INTERVENTIONAL

Study Start Date

2020-01-20

Study Completion Date

2024-07-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Background:

A significant proportion of older adults suffered from age-related diseases particularly dementia, also known as major neurocognitive disorder (NCD), which is becoming a worldwide health burden. In principle, Interventions for dementia should have optimal benefits at the earliest preclinical stage yet no evidence has been found to support a particular pharmacological approach in preventing cognitive decline during the stage of mild NCD. Non-invasive brain stimulation (NIBS), on the other hand, is increasingly recognized as a potential alternative to tackle this problem. Typical NIBS include transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS). A new kind of NIBS named Transcranial Pulse stimulation (TPS) is also recently used for treating patients with Alzheimer's disease (AD).TPS is a kind of NIBS that uses repetitive sin ultrashort pulses in the ultrasound frequency range to stimulate the brain, and it can provide better spatial precision and reach deeper brain regions comparing to tDCS and TMS. The mechanism of TPS is to convert the mechanical TPS stimulus into biochemical responses, thus influence some fundamental cell functions. A recent study showed that there is a significant improvement in using TPS in treating AD. However, there has been no study investigating the effect of TPS on older adults with mild NCD.

Objective:

This study is an open-label self-controlled study to assess the effectiveness and tolerability of TPS on cognition in older adults with mild NCD. We hypothesized that a 2-week TPS intervention could significantly improve patient's global cognition which will be maintained for 12 weeks.

Design:

The current study is an open-label self-controlled interventional trial of TPS guided by neuro-navigation using structural MRI. All participants will undergo the treatment as usual (TAU) period as self-controlled for 12 weeks. They will then receive a six-session TPS intervention for 2 weeks with three sessions per week. A 12 weeks post-intervention assessment will then be conducted.

Data Analysis:

Primary outcome and secondary outcomes assessment would be carried out at baseline, after TAU period, immediately after the intervention and 12 weeks after the intervention. The primary outcome will be the change of the Hong Kong Chinese version of the Montreal Cognitive Assessment (HK-MoCA). The secondary outcome includes specific cognitive domains, daily functioning, mood, and apathy. The intention-to-treat analysis would be carried out.

Significance:

The result of the current study would provide further data on the effectiveness and tolerability of TPS as a new treatment in patients with mild NCD.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Background Age-related diseases, particularly dementia, now known as major neurocognitive disorder (NCD), are a great health burden in Hong Kong and worldwide. Interventions that aim to ameliorate cognitive decline or prevent dementia offer a compelling alternative paradigm for reducing the impact of the disease, not only on individuals but also on their families and on society. In principle, to achieve its optimal benefits, intervention for dementia should begin at the earliest preclinical stage. However, no evidence has been found to support a pharmacological approach to the prevention, reduction, or postponement of cognitive decline during the stage of mild NCD. Besides pharmacological approaches, non-invasive brain stimulation (NIBS) is increasingly recognised as a potential alternative to tackle this problem. The typical examples of NIBS are transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS). Besides these, there is a new NIBS named transcranial pulse stimulation (TPS), also known as low-intensity extracorporeal shock wave therapy (Li-ESWT), which recently obtained CE marking in 2018 for the treatment of the central nervous system (CNS) in patients with mild to moderate Alzheimer's disease (AD).

The introduction of TPS TPS is using repetitive single ultrashort pulses in the ultrasound frequency range to stimulate the brain. With a neuro-navigation device, TPS can achieve this in a highly focal and precisely targeted manner. TPS differs from tDCS and TMS using direct or induced electric current. Using electric current to stimulate the brain may be limited by the problem of conductivity and failure to reach deep brain regions. Instead, low-intensity focused ultrasound provides good spatial precision and resolution to noninvasively modulate subcortical areas, despite the problem of skull attenuation. Using lower ultrasound frequencies TPS can successfully improve skull penetration in humans.

Biological mechanism of TPS The basic mechanism of TPS is mechanotransduction. It is a biological pathway through which the cells convert the mechanical TPS stimulus into biochemical responses, thus influencing some fundamental cell functions such as migration, proliferation, differentiation, and apoptosis. The ultrashort ultrasound pulse could enhance the cell proliferation and differentiation in cultured neural stem cell, which plays an important role in the repair of brain function in CNS diseases. The TPS may affect neurons and induce neuroplastic effects through several pathways including increasing cell permeability, stimulation of mechanosensitive ion channels, the release of nitric oxide resulting in vasodilation, increased metabolic activity and angiogenesis, stimulation of vascular growth factors (VEGF) and stimulation of brain derived neurotrophic factor (BDNF).

Clinical effects of TPS Focused ultrasound demonstrated the neuromodulation effect in the human brain. Focused ultrasound can modulate the amplitude of somatosensory evoked potentials (SEPs) when targeted at the cortical regions that generate these potentials and even the deep structure such as the thalamus. TPS, previously named as Li-ESWT was applied to five patients with unresponsive wakefulness syndrome. They received 4-week (3 times per week) treatment, 4000 pulses each, every 6 months for an average of two to four years. There was significant improvement in the vigilance and in three patients the percutaneous endoscopic gastrostomy (PEG) tube could be removed due to improved oropharyngeal motor function. In the most recent study, TPS was applied to 35 elderly with AD. They were treated in 3 TPS sessions (6000 pulses each) per week for 2-4 weeks, either over classical AD affected sites such as the dorsolateral prefrontal cortex, areas of the memory and language network, or over all accessible brain areas (global brain stimulation). Significant improvement in the CERAD (Consortium to Establish a Registry for Alzheimer's Disease) score was demonstrated (immediately as well as 1 and 3 months after stimulation. fMRI also showed significant increased connectivity within the memory network.

Safety issue of TPS TPS uses very low energy for the brain stimulation. In vivo animal TPS study did not cause any tissue damage despite using 6-7-fold higher energy levels compared with those in human studies. Furthermore, the intervention did not cause any serious adverse effects such as intracranial bleeding, oedema or other intracranial pathology, as confirmed with MRI in a previous AD study. Few subjects reported headache (4%), pain or pressure (1%) and mood deterioration (3%). The CE marked TPS system has proven to be safe in \>1500 treatments.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Mild Neurocognitive Disorder

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Since TPS is a new NIBS technology, no studies have been done on older adults with mild NCD, which is a golden period for intervention before the pathology involved the whole brain and leading to irreversible damage. We would like to perform an open-label self-controlled study to assess the effectiveness and tolerability of TPS with neuro-navigation on cognition in older adults with mild NCD.

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Treatment Group

A 2-week intervention TPS intervention will result in a significant improvement in the Montreal Cognitive Assessment (HK-MoCA; Hong Kong Chinese version), which will be maintained for 12 weeks.

Group Type EXPERIMENTAL

Transcranial Pulse Stimulation (TPS)

Intervention Type DEVICE

A global brain stimulation approach, which homogenously distributes the total energy of 6000 TPS pulses per session over all accessible brain areas.

Prefrontal, Temporal and Occipital brain areas were stimulated by ultrashort (3μs) ultrasound pulses with typical energy levels of 0.2-0.25 mJ/mm2 and pulse frequencies of 4-5 Hz (pulses per second).

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Transcranial Pulse Stimulation (TPS)

A global brain stimulation approach, which homogenously distributes the total energy of 6000 TPS pulses per session over all accessible brain areas.

Prefrontal, Temporal and Occipital brain areas were stimulated by ultrashort (3μs) ultrasound pulses with typical energy levels of 0.2-0.25 mJ/mm2 and pulse frequencies of 4-5 Hz (pulses per second).

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* 1\. 60 years of age or above
* 2\. Chinese ethnicity
* 3\. Mild neurocognitive disorder (NCD) meeting the 5th Edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria
* 4\. At least 3 months of stable anti-dementia therapy prior to enrolment (unchanged medication, if receiving)
* 5\. Written informed consent

Exclusion Criteria

* 1\. A HK-MoCA score below the second percentile according to the subject's age and education level
* 2\. Alcohol or substance dependence
* 3\. Concomitant unstable major medical conditions or major neurological conditions such as brain tumour, brain aneurysm
* 4\. Haemophilia or other blood clotting disorders or thrombosis
* 5\. Significant communicative impairments
* 6\. Participants with any metal implant in brain or treated area of the head
Minimum Eligible Age

60 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Storz Medical AG

INDUSTRY

Sponsor Role collaborator

The University of Hong Kong

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Calvin Pak Wing Cheng, MBBS (HKU)

Role: PRINCIPAL_INVESTIGATOR

The University of Hong Kong

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

The Hong Kong Jockey Club Building for Interdisciplinary Research

Hong Kong, , Hong Kong

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

Hong Kong

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Calvin Pak Wing Cheng, MBBS (HKU)

Role: CONTACT

22554486 ext. 852

Tommy Kwan Hin Fong, MPsyMed

Role: CONTACT

64214186 ext. 852

References

Explore related publications, articles, or registry entries linked to this study.

Beisteiner R, Matt E, Fan C, Baldysiak H, Schonfeld M, Philippi Novak T, Amini A, Aslan T, Reinecke R, Lehrner J, Weber A, Reime U, Goldenstedt C, Marlinghaus E, Hallett M, Lohse-Busch H. Transcranial Pulse Stimulation with Ultrasound in Alzheimer's Disease-A New Navigated Focal Brain Therapy. Adv Sci (Weinh). 2019 Dec 23;7(3):1902583. doi: 10.1002/advs.201902583. eCollection 2020 Feb.

Reference Type BACKGROUND
PMID: 32042569 (View on PubMed)

d'Agostino MC, Craig K, Tibalt E, Respizzi S. Shock wave as biological therapeutic tool: From mechanical stimulation to recovery and healing, through mechanotransduction. Int J Surg. 2015 Dec;24(Pt B):147-53. doi: 10.1016/j.ijsu.2015.11.030. Epub 2015 Nov 28.

Reference Type BACKGROUND
PMID: 26612525 (View on PubMed)

Hatanaka K, Ito K, Shindo T, Kagaya Y, Ogata T, Eguchi K, Kurosawa R, Shimokawa H. Molecular mechanisms of the angiogenic effects of low-energy shock wave therapy: roles of mechanotransduction. Am J Physiol Cell Physiol. 2016 Sep 1;311(3):C378-85. doi: 10.1152/ajpcell.00152.2016. Epub 2016 Jul 13.

Reference Type BACKGROUND
PMID: 27413171 (View on PubMed)

Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 2006 May;20(7):811-27. doi: 10.1096/fj.05-5424rev.

Reference Type BACKGROUND
PMID: 16675838 (View on PubMed)

Legon W, Ai L, Bansal P, Mueller JK. Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum Brain Mapp. 2018 May;39(5):1995-2006. doi: 10.1002/hbm.23981. Epub 2018 Jan 29.

Reference Type BACKGROUND
PMID: 29380485 (View on PubMed)

Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, Tyler WJ. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014 Feb;17(2):322-9. doi: 10.1038/nn.3620. Epub 2014 Jan 12.

Reference Type BACKGROUND
PMID: 24413698 (View on PubMed)

Lohse-Busch H, Reime U, Falland R. Symptomatic treatment of unresponsive wakefulness syndrome with transcranially focused extracorporeal shock waves. NeuroRehabilitation. 2014 Jan 1;35(2):235-44. doi: 10.3233/NRE-141115.

Reference Type BACKGROUND
PMID: 24990026 (View on PubMed)

Mariotto S, Cavalieri E, Amelio E, Ciampa AR, de Prati AC, Marlinghaus E, Russo S, Suzuki H. Extracorporeal shock waves: from lithotripsy to anti-inflammatory action by NO production. Nitric Oxide. 2005 Mar;12(2):89-96. doi: 10.1016/j.niox.2004.12.005.

Reference Type BACKGROUND
PMID: 15740982 (View on PubMed)

Minjoli S, Saturnino GB, Blicher JU, Stagg CJ, Siebner HR, Antunes A, Thielscher A. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation. Neuroimage Clin. 2017 Apr 18;15:106-117. doi: 10.1016/j.nicl.2017.04.014. eCollection 2017.

Reference Type BACKGROUND
PMID: 28516033 (View on PubMed)

Spagnolo PA, Wang H, Srivanitchapoom P, Schwandt M, Heilig M, Hallett M. Lack of Target Engagement Following Low-Frequency Deep Transcranial Magnetic Stimulation of the Anterior Insula. Neuromodulation. 2019 Dec;22(8):877-883. doi: 10.1111/ner.12875. Epub 2018 Oct 29.

Reference Type BACKGROUND
PMID: 30370983 (View on PubMed)

Raschetti R, Albanese E, Vanacore N, Maggini M. Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trials. PLoS Med. 2007 Nov 27;4(11):e338. doi: 10.1371/journal.pmed.0040338.

Reference Type BACKGROUND
PMID: 18044984 (View on PubMed)

Wang B, Ning H, Reed-Maldonado AB, Zhou J, Ruan Y, Zhou T, Wang HS, Oh BS, Banie L, Lin G, Lue TF. Low-Intensity Extracorporeal Shock Wave Therapy Enhances Brain-Derived Neurotrophic Factor Expression through PERK/ATF4 Signaling Pathway. Int J Mol Sci. 2017 Feb 16;18(2):433. doi: 10.3390/ijms18020433.

Reference Type BACKGROUND
PMID: 28212323 (View on PubMed)

Yeung PY, Wong LL, Chan CC, Leung JL, Yung CY. A validation study of the Hong Kong version of Montreal Cognitive Assessment (HK-MoCA) in Chinese older adults in Hong Kong. Hong Kong Med J. 2014 Dec;20(6):504-10. doi: 10.12809/hkmj144219. Epub 2014 Aug 15.

Reference Type BACKGROUND
PMID: 25125421 (View on PubMed)

Zhang J, Kang N, Yu X, Ma Y, Pang X. Radial Extracorporeal Shock Wave Therapy Enhances the Proliferation and Differentiation of Neural Stem Cells by Notch, PI3K/AKT, and Wnt/beta-catenin Signaling. Sci Rep. 2017 Nov 10;7(1):15321. doi: 10.1038/s41598-017-15662-5.

Reference Type BACKGROUND
PMID: 29127399 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

UW20-024

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.