Examining the Effects of Estradiol on Neural and Molecular Response to Reward
NCT ID: NCT05282277
Last Updated: 2025-02-26
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
PHASE4
103 participants
INTERVENTIONAL
2022-04-20
2026-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Perimenopausal Effects of Estradiol on Reward Responsiveness
NCT02255175
Ovarian Hormone Withdrawal, Anhedonia, and Reward Sensitivity in Women With Premenstrual Exacerbations of Depression
NCT06610305
Estrogen Variability and Irritability During the Menopause Transition
NCT05388656
Characterizing the Neural Substrates of Irritability in Women: an Experimental Neuroendocrine Model
NCT04051320
Neuroendocrine Risk for PTSD in Women
NCT03973229
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
This project will examine the effects of estradiol administration on perimenopausal-onset (PO) anhedonia and psychosis using simultaneous positron emission tomography and functional magnetic resonance imaging (PET-MR). Preliminary data presented here demonstrate that anhedonia is associated with decreased striatal DA release to rewards using PET with the D2/D3 DA receptor antagonist \[11C\]raclopride; anhedonia and psychosis are characterized by altered striatal activation to rewards using fMRI; estradiol impacts neural responses to rewards in PO anhedonia and PO psychosis; and estradiol improves PO anhedonia and PO psychosis. This project proposes to extend these lines of research by using simultaneous PET-MR to investigate the effects of transdermal estradiol, administered as a mechanistic probe, on PO anhedonia and PO psychosis in a transdiagnostic sample of women using a double-blind between-groups placebo-controlled design. This sample will be enriched for anhedonia (i.e., at least mild anhedonia). Although anhedonia and psychosis will be analyzed dimensionally, our recruitment and stratification strategy will ensure that a range of symptom severities (mild-to-moderate or high PO anhedonia; absent-to-mild or moderate PO psychosis) are equally balanced and randomized to each experimental group (estradiol or placebo). Our central hypotheses are that the mesolimbic DA system is impaired in PO anhedonia and psychosis, that estradiol administration will normalize neural responses to rewards (measured by fMRI) and striatal DA functioning (measured by PET), and that the degree of change in striatal functioning will be associated with the degree of change in PO anhedonia and PO psychosis.
Specific Aim 1 (baseline associations between PO anhedonia, PO psychosis, and PET-MR): Characterize, at baseline, associations between PO anhedonia and PO psychosis symptom severity and reward-related striatal activation measured by fMRI, and tonic and phasic striatal DA activity measured by \[11C\]raclopride PET.
Specific Aim 2 (estradiol effects on PO anhedonia and PET-MR): Determine the effects of estradiol (vs. placebo) on PO anhedonia and changes in PET-MR metrics related to reward processing.
Specific Aim 3 (estradiol effects on PO psychosis and PET-MR): Determine the effects of estradiol (vs. placebo) on PO psychosis and changes in PET-MR metrics related to reward processing.
This project will improve our understanding of PO anhedonia and psychosis and the mechanisms of action of the effect of estradiol on PO anhedonia and psychosis. This research will provide new mechanistic endpoints to evaluate novel PO anhedonia and psychosis treatments that target the mesolimbic DA system.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Perimenopausal women with mild-to-moderate anhedonia + absent-to-mild psychosis, active group
Participants will be randomly assigned to take 100 μg/day of transdermal estradiol for 3 weeks followed by 1 week of combined 100 μg/day of transdermal estradiol and 200 mg/day progesterone.
Transdermal Estradiol
Participants will be randomized to receive transdermal estradiol (100μg/day) patch for 3 weeks.
Micronized Progesterone
Participants will receive an additional week of micronized progesterone (200 mg/day) at the end of the study to precipitate menstruation.
Raclopride C11
All Participants will receive two PET-MR scans using \[11C\]raclopride IV as the tracer. The first scan will occur at baseline and the second at post treatment after 3 weeks.
Perimenopausal women with mild-to-moderate anhedonia + absent-to-mild psychosis, placebo group
Participants will be randomly assigned to receive a matching placebo patch for 3 weeks.
Matching Placebo Patch
Participants will be randomized to receive a transdermal estradiol-matching placebo patch for 3 weeks
Raclopride C11
All Participants will receive two PET-MR scans using \[11C\]raclopride IV as the tracer. The first scan will occur at baseline and the second at post treatment after 3 weeks.
Perimenopausal women with mild-to-moderate anhedonia + moderate psychosis, active group
Participants will be randomly assigned to take 100 μg/day of transdermal estradiol for 3 weeks followed by 1 week of combined 100 μg/day of transdermal estradiol and 200 mg/day progesterone.
Transdermal Estradiol
Participants will be randomized to receive transdermal estradiol (100μg/day) patch for 3 weeks.
Micronized Progesterone
Participants will receive an additional week of micronized progesterone (200 mg/day) at the end of the study to precipitate menstruation.
Raclopride C11
All Participants will receive two PET-MR scans using \[11C\]raclopride IV as the tracer. The first scan will occur at baseline and the second at post treatment after 3 weeks.
Perimenopausal women with mild-to-moderate anhedonia + moderate psychosis, placebo group
Participants will be randomly assigned to receive a matching placebo patch for 3 weeks.
Matching Placebo Patch
Participants will be randomized to receive a transdermal estradiol-matching placebo patch for 3 weeks
Raclopride C11
All Participants will receive two PET-MR scans using \[11C\]raclopride IV as the tracer. The first scan will occur at baseline and the second at post treatment after 3 weeks.
Perimenopausal women with high anhedonia + absent-to-mild psychosis, active group
Participants will be randomly assigned to take 100 μg/day of transdermal estradiol for 3 weeks followed by 1 week of combined 100 μg/day of transdermal estradiol and 200 mg/day progesterone.
Transdermal Estradiol
Participants will be randomized to receive transdermal estradiol (100μg/day) patch for 3 weeks.
Micronized Progesterone
Participants will receive an additional week of micronized progesterone (200 mg/day) at the end of the study to precipitate menstruation.
Raclopride C11
All Participants will receive two PET-MR scans using \[11C\]raclopride IV as the tracer. The first scan will occur at baseline and the second at post treatment after 3 weeks.
Perimenopausal women with high anhedonia + absent-to-mild psychosis, placebo group
Participants will be randomly assigned to receive a matching placebo patch for 3 weeks.
Matching Placebo Patch
Participants will be randomized to receive a transdermal estradiol-matching placebo patch for 3 weeks
Raclopride C11
All Participants will receive two PET-MR scans using \[11C\]raclopride IV as the tracer. The first scan will occur at baseline and the second at post treatment after 3 weeks.
Perimenopausal women with high anhedonia + moderate psychosis, active group
Participants will be randomly assigned to take 100 μg/day of transdermal estradiol for 3 weeks followed by 1 week of combined 100 μg/day of transdermal estradiol and 200 mg/day progesterone.
Transdermal Estradiol
Participants will be randomized to receive transdermal estradiol (100μg/day) patch for 3 weeks.
Micronized Progesterone
Participants will receive an additional week of micronized progesterone (200 mg/day) at the end of the study to precipitate menstruation.
Raclopride C11
All Participants will receive two PET-MR scans using \[11C\]raclopride IV as the tracer. The first scan will occur at baseline and the second at post treatment after 3 weeks.
Perimenopausal women with high anhedonia + moderate psychosis, placebo group
Participants will be randomly assigned to receive a matching placebo patch for 3 weeks.
Matching Placebo Patch
Participants will be randomized to receive a transdermal estradiol-matching placebo patch for 3 weeks
Raclopride C11
All Participants will receive two PET-MR scans using \[11C\]raclopride IV as the tracer. The first scan will occur at baseline and the second at post treatment after 3 weeks.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Transdermal Estradiol
Participants will be randomized to receive transdermal estradiol (100μg/day) patch for 3 weeks.
Micronized Progesterone
Participants will receive an additional week of micronized progesterone (200 mg/day) at the end of the study to precipitate menstruation.
Matching Placebo Patch
Participants will be randomized to receive a transdermal estradiol-matching placebo patch for 3 weeks
Raclopride C11
All Participants will receive two PET-MR scans using \[11C\]raclopride IV as the tracer. The first scan will occur at baseline and the second at post treatment after 3 weeks.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Stated willingness to comply with all study procedures, lifestyle considerations, and availability for the duration of the study
* 44-55 years old unmedicated perimenopausal women who have ≥ 2 skipped menstrual cycles, amenorrhea ≥ 60 days, corresponding to the late menopause transition (Stages of Reproductive Aging Workshop (STRAW stage -1).
* Anhedonia or psychosis symptoms that began during the period of menstrual irregularity.
* Clinician's Global Impression Scale-Severity score (CGI-S) \> 3 to confirm a clinically impaired sample.
* Willingness to adhere to the estradiol regimen
Exclusion Criteria
* BMI \< 18 or \> 35 kg/m\^2
* A history of chronic menstrual cycle irregularity, meaning \> 1 year without menses
* MR contraindications: Metal in the body, dental work other than fillings or gold, tattoos, metal injury, any other implant unless they are 100% plastic.
* PET contradictions: participation in \>1 research study in the past 12 months that included ionizing radiation exceeding 3 rem to the whole body (e.g., PET, CT). Standard of care imaging is not exclusionary.
* The use of psychotropics or hormonal preparations.
* History of psychiatric illness during the 2 years before the onset of perimenopause.
* History of chronic, recurrent mood or psychotic disorders (i.e., more than one non-reproductive-related mood episode prior to the perimenopausal index episode).
* A history of mood episodes requiring hospitalization.
* Current mania;
* Depressive episode(s) within 2 years of enrollment not associated with the transition to menopause;
* A history of suicide attempts within the last year or current active suicidal ideation with intent and plan.
* Neurological conditions (e.g., history of seizure or TBI)
* Brain stimulation treatment in the past six months.
* Endometriosis;
* First degree relative with premenopausal breast cancer or breast cancer presenting in both breasts or multiple family members (greater than three relatives) with postmenopausal breast cancer.
* Current medication use (i.e., current psychotropics, current anti-hypertensives, current statins, current hormonal preparations, or frequent use of anti-inflammatory agents (\> 10 times/month)). Women will be allowed to enroll who take medications without known mood effects (e.g. stable thyroid hormone replacement and occasional (\< 5 times/month) use of Ambien)\*;
* Pregnant, breastfeeding or trying to conceive;
* Last menstrual period more than 12 months prior to enrollment;
* History of undiagnosed vaginal bleeding;
* Undiagnosed enlargement of the ovaries;
* Polycystic ovary syndrome;
* History of breast or ovarian cancer;
* First degree relative with ovarian cancer;
* Abnormal finding in a provider breast exam and/or mammogram;
* Known carrier of BRCA1 or 2 mutation;
* Porphyria;
* Malignant melanoma;
* Hodgkin's disease;
* Recurrent migraine headaches that are preceded by aura;
* Gallbladder or pancreatic disease\*\*;
* Heart or kidney disease\*\*;
* Liver disease;
* cerebrovascular disease (stroke);
* First degree relative with history of heart attack or stroke;
* Current nicotine use;
* Self-reported claustrophobia
* Peanut allergy
* all reported prescription medications will be reviewed and cleared by a study physician prior to a participant's enrollment;
* participants will be given the opportunity to describe these conditions in the online screening survey. Reported conditions that are acute in nature and/or benign will be reviewed by a study physician and exclusions will be decided case-by-case. All chronic conditions will be exclusionary. For those where it is deemed that an exclusion does not apply, primary analyses will not be affected, but exploratory analyses will be conducted excluding these individuals
45 Years
55 Years
FEMALE
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Institute of Mental Health (NIMH)
NIH
University of North Carolina, Chapel Hill
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Crystal E Schiller, PhD
Role: PRINCIPAL_INVESTIGATOR
UNC School of Medicine - Department of Psychiatry
Gabriel Dichter, PhD
Role: PRINCIPAL_INVESTIGATOR
UNC School of Medicine - CIDD
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of North Carolina at Chapel Hill
Chapel Hill, North Carolina, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Bromberger JT, Matthews KA, Schott LL, Brockwell S, Avis NE, Kravitz HM, Everson-Rose SA, Gold EB, Sowers M, Randolph JF Jr. Depressive symptoms during the menopausal transition: the Study of Women's Health Across the Nation (SWAN). J Affect Disord. 2007 Nov;103(1-3):267-72. doi: 10.1016/j.jad.2007.01.034. Epub 2007 Feb 28.
Freeman EW, Sammel MD, Boorman DW, Zhang R. Longitudinal pattern of depressive symptoms around natural menopause. JAMA Psychiatry. 2014 Jan;71(1):36-43. doi: 10.1001/jamapsychiatry.2013.2819.
Maki PM, Kornstein SG, Joffe H, Bromberger JT, Freeman EW, Athappilly G, Bobo WV, Rubin LH, Koleva HK, Cohen LS, Soares CN. Guidelines for the Evaluation and Treatment of Perimenopausal Depression: Summary and Recommendations. J Womens Health (Larchmt). 2019 Feb;28(2):117-134. doi: 10.1089/jwh.2018.27099.mensocrec. Epub 2018 Sep 5.
Frokjaer VG. Pharmacological sex hormone manipulation as a risk model for depression. J Neurosci Res. 2020 Jul;98(7):1283-1292. doi: 10.1002/jnr.24632. Epub 2020 May 12.
Schiller CE, Johnson SL, Abate AC, Schmidt PJ, Rubinow DR. Reproductive Steroid Regulation of Mood and Behavior. Compr Physiol. 2016 Jun 13;6(3):1135-60. doi: 10.1002/cphy.c150014.
Dichter GS, Damiano CA, Allen JA. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J Neurodev Disord. 2012 Jul 6;4(1):19. doi: 10.1186/1866-1955-4-19.
Nusslock R, Alloy LB. Reward processing and mood-related symptoms: An RDoC and translational neuroscience perspective. J Affect Disord. 2017 Jul;216:3-16. doi: 10.1016/j.jad.2017.02.001. Epub 2017 Feb 4.
Macoveanu J, Meluken I, Chase HW, Phillips ML, Kessing LV, Siebner HR, Vinberg M, Miskowiak KW. Reduced frontostriatal response to expected value and reward prediction error in remitted monozygotic twins with mood disorders and their unaffected high-risk co-twins. Psychol Med. 2021 Jul;51(10):1637-1646. doi: 10.1017/S0033291720000367. Epub 2020 Mar 2.
Guffanti G, Kumar P, Admon R, Treadway MT, Hall MH, Mehta M, Douglas S, Arulpragasam AR, Pizzagalli DA. Depression genetic risk score is associated with anhedonia-related markers across units of analysis. Transl Psychiatry. 2019 Sep 19;9(1):236. doi: 10.1038/s41398-019-0566-7.
Kumar P, Goer F, Murray L, Dillon DG, Beltzer ML, Cohen AL, Brooks NH, Pizzagalli DA. Impaired reward prediction error encoding and striatal-midbrain connectivity in depression. Neuropsychopharmacology. 2018 Jun;43(7):1581-1588. doi: 10.1038/s41386-018-0032-x. Epub 2018 Feb 26.
Treadway MT, Zald DH. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev. 2011 Jan;35(3):537-55. doi: 10.1016/j.neubiorev.2010.06.006. Epub 2010 Jul 11.
Willner P, Scheel-Kruger J, Belzung C. The neurobiology of depression and antidepressant action. Neurosci Biobehav Rev. 2013 Dec;37(10 Pt 1):2331-71. doi: 10.1016/j.neubiorev.2012.12.007. Epub 2012 Dec 19.
Pizzagalli DA. Depression, stress, and anhedonia: toward a synthesis and integrated model. Annu Rev Clin Psychol. 2014;10:393-423. doi: 10.1146/annurev-clinpsy-050212-185606.
Hamilton JP, Sacchet MD, Hjornevik T, Chin FT, Shen B, Kampe R, Park JH, Knutson BD, Williams LM, Borg N, Zaharchuk G, Camacho MC, Mackey S, Heilig M, Drevets WC, Glover GH, Gambhir SS, Gotlib IH. Striatal dopamine deficits predict reductions in striatal functional connectivity in major depression: a concurrent 11C-raclopride positron emission tomography and functional magnetic resonance imaging investigation. Transl Psychiatry. 2018 Nov 30;8(1):264. doi: 10.1038/s41398-018-0316-2.
Treadway MT. The Neurobiology of Motivational Deficits in Depression--An Update on Candidate Pathomechanisms. Curr Top Behav Neurosci. 2016;27:337-55. doi: 10.1007/7854_2015_400.
Whitton AE, Treadway MT, Pizzagalli DA. Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry. 2015 Jan;28(1):7-12. doi: 10.1097/YCO.0000000000000122.
Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull. 2009 May;35(3):549-62. doi: 10.1093/schbul/sbp006. Epub 2009 Mar 26.
Morris RW, Vercammen A, Lenroot R, Moore L, Langton JM, Short B, Kulkarni J, Curtis J, O'Donnell M, Weickert CS, Weickert TW. Disambiguating ventral striatum fMRI-related BOLD signal during reward prediction in schizophrenia. Mol Psychiatry. 2012 Mar;17(3):235, 280-9. doi: 10.1038/mp.2011.75. Epub 2011 Jun 28.
Morris R, Griffiths O, Le Pelley ME, Weickert TW. Attention to irrelevant cues is related to positive symptoms in schizophrenia. Schizophr Bull. 2013 May;39(3):575-82. doi: 10.1093/schbul/sbr192. Epub 2012 Jan 20.
Wotruba D, Heekeren K, Michels L, Buechler R, Simon JJ, Theodoridou A, Kollias S, Rossler W, Kaiser S. Symptom dimensions are associated with reward processing in unmedicated persons at risk for psychosis. Front Behav Neurosci. 2014 Nov 18;8:382. doi: 10.3389/fnbeh.2014.00382. eCollection 2014.
van Timmeren T, Quail SL, Balleine BW, Geurts DEM, Goudriaan AE, van Holst RJ. Intact corticostriatal control of goal-directed action in Alcohol Use Disorder: a Pavlovian-to-instrumental transfer and outcome-devaluation study. Sci Rep. 2020 Mar 18;10(1):4949. doi: 10.1038/s41598-020-61892-5.
Kirschner M, Hager OM, Muff L, Bischof M, Hartmann-Riemer MN, Kluge A, Habermeyer B, Seifritz E, Tobler PN, Kaiser S. Ventral Striatal Dysfunction and Symptom Expression in Individuals With Schizotypal Personality Traits and Early Psychosis. Schizophr Bull. 2018 Jan 13;44(1):147-157. doi: 10.1093/schbul/sbw142.
Romaniuk L, Honey GD, King JR, Whalley HC, McIntosh AM, Levita L, Hughes M, Johnstone EC, Day M, Lawrie SM, Hall J. Midbrain activation during Pavlovian conditioning and delusional symptoms in schizophrenia. Arch Gen Psychiatry. 2010 Dec;67(12):1246-54. doi: 10.1001/archgenpsychiatry.2010.169.
Roiser JP, Howes OD, Chaddock CA, Joyce EM, McGuire P. Neural and behavioral correlates of aberrant salience in individuals at risk for psychosis. Schizophr Bull. 2013 Nov;39(6):1328-36. doi: 10.1093/schbul/sbs147. Epub 2012 Dec 12.
Modinos G, Tseng HH, Falkenberg I, Samson C, McGuire P, Allen P. Neural correlates of aberrant emotional salience predict psychotic symptoms and global functioning in high-risk and first-episode psychosis. Soc Cogn Affect Neurosci. 2015 Oct;10(10):1429-36. doi: 10.1093/scan/nsv035. Epub 2015 Mar 25.
Jensen J, Willeit M, Zipursky RB, Savina I, Smith AJ, Menon M, Crawley AP, Kapur S. The formation of abnormal associations in schizophrenia: neural and behavioral evidence. Neuropsychopharmacology. 2008 Feb;33(3):473-9. doi: 10.1038/sj.npp.1301437. Epub 2007 May 2.
Laruelle M, Abi-Dargham A. Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol. 1999 Dec;13(4):358-71. doi: 10.1177/026988119901300405.
van Winkel R, Stefanis NC, Myin-Germeys I. Psychosocial stress and psychosis. A review of the neurobiological mechanisms and the evidence for gene-stress interaction. Schizophr Bull. 2008 Nov;34(6):1095-105. doi: 10.1093/schbul/sbn101. Epub 2008 Aug 20.
Cannon TD, van Erp TG, Bearden CE, Loewy R, Thompson P, Toga AW, Huttunen MO, Keshavan MS, Seidman LJ, Tsuang MT. Early and late neurodevelopmental influences in the prodrome to schizophrenia: contributions of genes, environment, and their interactions. Schizophr Bull. 2003;29(4):653-69. doi: 10.1093/oxfordjournals.schbul.a007037.
Howes OD, McDonald C, Cannon M, Arseneault L, Boydell J, Murray RM. Pathways to schizophrenia: the impact of environmental factors. Int J Neuropsychopharmacol. 2004 Mar;7 Suppl 1:S7-S13. doi: 10.1017/S1461145704004122.
Maia TV, Frank MJ. An Integrative Perspective on the Role of Dopamine in Schizophrenia. Biol Psychiatry. 2017 Jan 1;81(1):52-66. doi: 10.1016/j.biopsych.2016.05.021. Epub 2016 Jun 1.
Frank MJ. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci. 2005 Jan;17(1):51-72. doi: 10.1162/0898929052880093.
Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci. 2011;34:441-66. doi: 10.1146/annurev-neuro-061010-113641.
Brown JK, Waltz JA, Strauss GP, McMahon RP, Frank MJ, Gold JM. Hypothetical decision making in schizophrenia: the role of expected value computation and "irrational" biases. Psychiatry Res. 2013 Sep 30;209(2):142-9. doi: 10.1016/j.psychres.2013.02.034. Epub 2013 May 9.
Strauss GP, Robinson BM, Waltz JA, Frank MJ, Kasanova Z, Herbener ES, Gold JM. Patients with schizophrenia demonstrate inconsistent preference judgments for affective and nonaffective stimuli. Schizophr Bull. 2011 Nov;37(6):1295-304. doi: 10.1093/schbul/sbq047. Epub 2010 May 19.
Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, Kapur S. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry. 2012 Aug;69(8):776-86. doi: 10.1001/archgenpsychiatry.2012.169.
Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M. Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry. 1998 Jun;155(6):761-7. doi: 10.1176/ajp.155.6.761.
Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2569-74. doi: 10.1073/pnas.94.6.2569.
Kestler LP, Walker E, Vega EM. Dopamine receptors in the brains of schizophrenia patients: a meta-analysis of the findings. Behav Pharmacol. 2001 Sep;12(5):355-71. doi: 10.1097/00008877-200109000-00007.
Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D'Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9235-40. doi: 10.1073/pnas.93.17.9235.
Hietala J, Syvalahti E, Vuorio K, Rakkolainen V, Bergman J, Haaparanta M, Solin O, Kuoppamaki M, Kirvela O, Ruotsalainen U, et al. Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet. 1995 Oct 28;346(8983):1130-1. doi: 10.1016/s0140-6736(95)91801-9.
Hietala J, Syvalahti E, Vilkman H, Vuorio K, Rakkolainen V, Bergman J, Haaparanta M, Solin O, Kuoppamaki M, Eronen E, Ruotsalainen U, Salokangas RK. Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia. Schizophr Res. 1999 Jan 4;35(1):41-50. doi: 10.1016/s0920-9964(98)00113-3.
Howes OD, Montgomery AJ, Asselin MC, Murray RM, Valli I, Tabraham P, Bramon-Bosch E, Valmaggia L, Johns L, Broome M, McGuire PK, Grasby PM. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry. 2009 Jan;66(1):13-20. doi: 10.1001/archgenpsychiatry.2008.514.
Lindstrom LH, Gefvert O, Hagberg G, Lundberg T, Bergstrom M, Hartvig P, Langstrom B. Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(beta-11C) DOPA and PET. Biol Psychiatry. 1999 Sep 1;46(5):681-8. doi: 10.1016/s0006-3223(99)00109-2.
Howes OD, Montgomery AJ, Asselin MC, Murray RM, Grasby PM, McGuire PK. Molecular imaging studies of the striatal dopaminergic system in psychosis and predictions for the prodromal phase of psychosis. Br J Psychiatry Suppl. 2007 Dec;51:s13-8. doi: 10.1192/bjp.191.51.s13.
Steinberg EM, Rubinow DR, Bartko JJ, Fortinsky PM, Haq N, Thompson K, Schmidt PJ. A cross-sectional evaluation of perimenopausal depression. J Clin Psychiatry. 2008 Jun;69(6):973-80. doi: 10.4088/jcp.v69n0614.
Schmidt PJ, Nieman L, Danaceau MA, Tobin MB, Roca CA, Murphy JH, Rubinow DR. Estrogen replacement in perimenopause-related depression: a preliminary report. Am J Obstet Gynecol. 2000 Aug;183(2):414-20. doi: 10.1067/mob.2000.106004.
The NAMS 2017 Hormone Therapy Position Statement Advisory Panel. The 2017 hormone therapy position statement of The North American Menopause Society. Menopause. 2017 Jul;24(7):728-753. doi: 10.1097/GME.0000000000000921.
Kulkarni J, Gavrilidis E, Wang W, Worsley R, Fitzgerald PB, Gurvich C, Van Rheenen T, Berk M, Burger H. Estradiol for treatment-resistant schizophrenia: a large-scale randomized-controlled trial in women of child-bearing age. Mol Psychiatry. 2015 Jun;20(6):695-702. doi: 10.1038/mp.2014.33. Epub 2014 Apr 15.
Burger H. The menopausal transition--endocrinology. J Sex Med. 2008 Oct;5(10):2266-73. doi: 10.1111/j.1743-6109.2008.00921.x. Epub 2008 Jul 1.
Fink G, Sumner BE, Rosie R, Grace O, Quinn JP. Estrogen control of central neurotransmission: effect on mood, mental state, and memory. Cell Mol Neurobiol. 1996 Jun;16(3):325-44. doi: 10.1007/BF02088099.
Barth C, Villringer A, Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci. 2015 Feb 20;9:37. doi: 10.3389/fnins.2015.00037. eCollection 2015.
Gupta R, Assalman I, Bottlender R. Menopause and schizophrenia. Menopause Int. 2012 Mar;18(1):10-4. doi: 10.1258/mi.2012.011116. Epub 2012 Feb 3.
Euvrard C, Oberlander C, Boissier JR. Antidopaminergic effect of estrogens at the striatal level. J Pharmacol Exp Ther. 1980 Jul;214(1):179-85.
Di Paolo T, Rouillard C, Bedard P. 17 beta-Estradiol at a physiological dose acutely increases dopamine turnover in rat brain. Eur J Pharmacol. 1985 Nov 5;117(2):197-203. doi: 10.1016/0014-2999(85)90604-1.
Thompson TL, Moss RL. Estrogen regulation of dopamine release in the nucleus accumbens: genomic- and nongenomic-mediated effects. J Neurochem. 1994 May;62(5):1750-6. doi: 10.1046/j.1471-4159.1994.62051750.x.
Calipari ES, Juarez B, Morel C, Walker DM, Cahill ME, Ribeiro E, Roman-Ortiz C, Ramakrishnan C, Deisseroth K, Han MH, Nestler EJ. Dopaminergic dynamics underlying sex-specific cocaine reward. Nat Commun. 2017 Jan 10;8:13877. doi: 10.1038/ncomms13877.
Shams WM, Cossette MP, Shizgal P, Brake WG. 17beta-estradiol locally increases phasic dopamine release in the dorsal striatum. Neurosci Lett. 2018 Feb 5;665:29-32. doi: 10.1016/j.neulet.2017.11.039. Epub 2017 Nov 22.
Madularu D, Kulkarni P, Yee JR, Kenkel WM, Shams WM, Ferris CF, Brake WG. High estrogen and chronic haloperidol lead to greater amphetamine-induced BOLD activation in awake, amphetamine-sensitized female rats. Horm Behav. 2016 Jun;82:56-63. doi: 10.1016/j.yhbeh.2016.04.007. Epub 2016 May 15.
Frank TC, Kim GL, Krzemien A, Van Vugt DA. Effect of menstrual cycle phase on corticolimbic brain activation by visual food cues. Brain Res. 2010 Dec 2;1363:81-92. doi: 10.1016/j.brainres.2010.09.071. Epub 2010 Oct 25.
Ossewaarde L, van Wingen GA, Rijpkema M, Backstrom T, Hermans EJ, Fernandez G. Menstrual cycle-related changes in amygdala morphology are associated with changes in stress sensitivity. Hum Brain Mapp. 2013 May;34(5):1187-93. doi: 10.1002/hbm.21502. Epub 2011 Dec 8.
Bayer J, Bandurski P, Sommer T. Differential modulation of activity related to the anticipation of monetary gains and losses across the menstrual cycle. Eur J Neurosci. 2013 Nov;38(10):3519-26. doi: 10.1111/ejn.12347. Epub 2013 Aug 25.
Dreher JC, Schmidt PJ, Kohn P, Furman D, Rubinow D, Berman KF. Menstrual cycle phase modulates reward-related neural function in women. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2465-70. doi: 10.1073/pnas.0605569104. Epub 2007 Jan 31.
Reimers L, Buchel C, Diekhof EK. How to be patient. The ability to wait for a reward depends on menstrual cycle phase and feedback-related activity. Front Neurosci. 2014 Dec 9;8:401. doi: 10.3389/fnins.2014.00401. eCollection 2014.
Diekhof EK, Ratnayake M. Menstrual cycle phase modulates reward sensitivity and performance monitoring in young women: Preliminary fMRI evidence. Neuropsychologia. 2016 Apr;84:70-80. doi: 10.1016/j.neuropsychologia.2015.10.016. Epub 2015 Oct 22.
Thomas J, Metereau E, Dechaud H, Pugeat M, Dreher JC. Hormonal treatment increases the response of the reward system at the menopause transition: a counterbalanced randomized placebo-controlled fMRI study. Psychoneuroendocrinology. 2014 Dec;50:167-80. doi: 10.1016/j.psyneuen.2014.08.012. Epub 2014 Sep 1.
Becker JB. Estrogen rapidly potentiates amphetamine-induced striatal dopamine release and rotational behavior during microdialysis. Neurosci Lett. 1990 Oct 16;118(2):169-71. doi: 10.1016/0304-3940(90)90618-j.
Inagaki T, Gautreaux C, Luine V. Acute estrogen treatment facilitates recognition memory consolidation and alters monoamine levels in memory-related brain areas. Horm Behav. 2010 Aug;58(3):415-26. doi: 10.1016/j.yhbeh.2010.05.013. Epub 2010 May 27.
Bayer J, Rusch T, Zhang L, Glascher J, Sommer T. Dose-dependent effects of estrogen on prediction error related neural activity in the nucleus accumbens of healthy young women. Psychopharmacology (Berl). 2020 Mar;237(3):745-755. doi: 10.1007/s00213-019-05409-7. Epub 2019 Nov 26.
Gogos A, Sbisa AM, Sun J, Gibbons A, Udawela M, Dean B. A Role for Estrogen in Schizophrenia: Clinical and Preclinical Findings. Int J Endocrinol. 2015;2015:615356. doi: 10.1155/2015/615356. Epub 2015 Sep 27.
Seeman P. Targeting the dopamine D2 receptor in schizophrenia. Expert Opin Ther Targets. 2006 Aug;10(4):515-31. doi: 10.1517/14728222.10.4.515.
Seeman P. Dopamine D2 receptors as treatment targets in schizophrenia. Clin Schizophr Relat Psychoses. 2010 Apr;4(1):56-73. doi: 10.3371/CSRP.4.1.5.
Sundstrom Poromaa I, Comasco E, Georgakis MK, Skalkidou A. Sex differences in depression during pregnancy and the postpartum period. J Neurosci Res. 2017 Jan 2;95(1-2):719-730. doi: 10.1002/jnr.23859.
Wehrl HF, Sauter AW, Divine MR, Pichler BJ. Combined PET/MR: a technology becomes mature. J Nucl Med. 2015 Feb;56(2):165-8. doi: 10.2967/jnumed.114.150318. Epub 2015 Jan 15.
Bailey DL, Pichler BJ, Guckel B, Barthel H, Beer AJ, Bremerich J, Czernin J, Drzezga A, Franzius C, Goh V, Hartenbach M, Iida H, Kjaer A, la Fougere C, Ladefoged CN, Law I, Nikolaou K, Quick HH, Sabri O, Schafer J, Schafers M, Wehrl HF, Beyer T. Combined PET/MRI: Multi-modality Multi-parametric Imaging Is Here: Summary Report of the 4th International Workshop on PET/MR Imaging; February 23-27, 2015, Tubingen, Germany. Mol Imaging Biol. 2015 Oct;17(5):595-608. doi: 10.1007/s11307-015-0886-9.
Riedl V, Bienkowska K, Strobel C, Tahmasian M, Grimmer T, Forster S, Friston KJ, Sorg C, Drzezga A. Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study. J Neurosci. 2014 Apr 30;34(18):6260-6. doi: 10.1523/JNEUROSCI.0492-14.2014.
Bailey DL, Antoch G, Bartenstein P, Barthel H, Beer AJ, Bisdas S, Bluemke DA, Boellaard R, Claussen CD, Franzius C, Hacker M, Hricak H, la Fougere C, Guckel B, Nekolla SG, Pichler BJ, Purz S, Quick HH, Sabri O, Sattler B, Schafer J, Schmidt H, van den Hoff J, Voss S, Weber W, Wehrl HF, Beyer T. Combined PET/MR: The Real Work Has Just Started. Summary Report of the Third International Workshop on PET/MR Imaging; February 17-21, 2014, Tubingen, Germany. Mol Imaging Biol. 2015 Jun;17(3):297-312. doi: 10.1007/s11307-014-0818-0.
Gilbert P, Allan S, Brough S, Melley S, Miles JN. Relationship of anhedonia and anxiety to social rank, defeat and entrapment. J Affect Disord. 2002 Sep;71(1-3):141-51. doi: 10.1016/s0165-0327(01)00392-5.
Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci. 2011 Feb;15(2):85-93. doi: 10.1016/j.tics.2010.11.004. Epub 2010 Dec 16.
Watson D, Weber K, Assenheimer JS, Clark LA, Strauss ME, McCormick RA. Testing a tripartite model: I. Evaluating the convergent and discriminant validity of anxiety and depression symptom scales. J Abnorm Psychol. 1995 Feb;104(1):3-14. doi: 10.1037//0021-843x.104.1.3.
Calabrese WR, Rudick MM, Simms LJ, Clark LA. Development and validation of Big Four personality scales for the Schedule for Nonadaptive and Adaptive Personality--Second Edition (SNAP-2). Psychol Assess. 2012 Sep;24(3):751-63. doi: 10.1037/a0026915. Epub 2012 Jan 16.
Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13(2):261-76. doi: 10.1093/schbul/13.2.261.
Kulkarni J, Riedel A, de Castella AR, Fitzgerald PB, Rolfe TJ, Taffe J, Burger H. Estrogen - a potential treatment for schizophrenia. Schizophr Res. 2001 Mar 1;48(1):137-44. doi: 10.1016/s0920-9964(00)00088-8.
Barch DM, Marder SR, Harms MP, Jarskog LF, Buchanan RW, Cronenwett W, Chen LS, Weiss M, Maguire RP, Pezous N, Feuerbach D, Lopez-Lopez C, Johns DR, Behrje RB, Gomez-Mancilla B. Task-related fMRI responses to a nicotinic acetylcholine receptor partial agonist in schizophrenia: A randomized trial. Prog Neuropsychopharmacol Biol Psychiatry. 2016 Nov 3;71:66-75. doi: 10.1016/j.pnpbp.2016.06.013. Epub 2016 Jun 28.
Insel C, Reinen J, Weber J, Wager TD, Jarskog LF, Shohamy D, Smith EE. Antipsychotic dose modulates behavioral and neural responses to feedback during reinforcement learning in schizophrenia. Cogn Affect Behav Neurosci. 2014 Mar;14(1):189-201. doi: 10.3758/s13415-014-0261-3.
Jarskog LF, Dong Z, Kangarlu A, Colibazzi T, Girgis RR, Kegeles LS, Barch DM, Buchanan RW, Csernansky JG, Goff DC, Harms MP, Javitt DC, Keefe RS, McEvoy JP, McMahon RP, Marder SR, Peterson BS, Lieberman JA. Effects of davunetide on N-acetylaspartate and choline in dorsolateral prefrontal cortex in patients with schizophrenia. Neuropsychopharmacology. 2013 Jun;38(7):1245-52. doi: 10.1038/npp.2013.23. Epub 2013 Jan 16.
Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, Sherman S, Sluss PM, de Villiers TJ; STRAW + 10 Collaborative Group. Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging. Fertil Steril. 2012 Apr;97(4):843-51. doi: 10.1016/j.fertnstert.2012.01.128. Epub 2012 Feb 16.
Soules MR, Sherman S, Parrott E, Rebar R, Santoro N, Utian W, Woods N. Stages of Reproductive Aging Workshop (STRAW). J Womens Health Gend Based Med. 2001 Nov;10(9):843-8. doi: 10.1089/152460901753285732.
Franken IH, Rassin E, Muris P. The assessment of anhedonia in clinical and non-clinical populations: further validation of the Snaith-Hamilton Pleasure Scale (SHAPS). J Affect Disord. 2007 Apr;99(1-3):83-9. doi: 10.1016/j.jad.2006.08.020. Epub 2006 Sep 20.
Krystal AD, Pizzagalli DA, Smoski M, Mathew SJ, Nurnberger J Jr, Lisanby SH, Iosifescu D, Murrough JW, Yang H, Weiner RD, Calabrese JR, Sanacora G, Hermes G, Keefe RSE, Song A, Goodman W, Szabo ST, Whitton AE, Gao K, Potter WZ. A randomized proof-of-mechanism trial applying the 'fast-fail' approach to evaluating kappa-opioid antagonism as a treatment for anhedonia. Nat Med. 2020 May;26(5):760-768. doi: 10.1038/s41591-020-0806-7. Epub 2020 Mar 30.
Snaith RP, Hamilton M, Morley S, Humayan A, Hargreaves D, Trigwell P. A scale for the assessment of hedonic tone the Snaith-Hamilton Pleasure Scale. Br J Psychiatry. 1995 Jul;167(1):99-103. doi: 10.1192/bjp.167.1.99.
Hafkenscheid A. Reliability of a standardized and expanded Brief Psychiatric Rating Scale: a replication study. Acta Psychiatr Scand. 1993 Nov;88(5):305-10. doi: 10.1111/j.1600-0447.1993.tb03464.x.
Keller J, Gomez RG, Kenna HA, Poesner J, DeBattista C, Flores B, Schatzberg AF. Detecting psychotic major depression using psychiatric rating scales. J Psychiatr Res. 2006 Feb;40(1):22-9. doi: 10.1016/j.jpsychires.2005.07.003. Epub 2005 Sep 13.
Coyle D, McGinnity TM, Prasad G. Creating a nonparametric brain-computer interface with neural time-series prediction preprocessing. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2183-6. doi: 10.1109/IEMBS.2006.260626.
Pelizza L, Garlassi S, Azzali S, Paterlini F, Scazza I, Chiri LR, Poletti M, Pupo S, Raballo A. Anhedonia in young people with first episode psychosis: a longitudinal study. Nord J Psychiatry. 2020 Aug;74(6):381-389. doi: 10.1080/08039488.2020.1733661. Epub 2020 Feb 28.
Trostheim M, Eikemo M, Meir R, Hansen I, Paul E, Kroll SL, Garland EL, Leknes S. Assessment of Anhedonia in Adults With and Without Mental Illness: A Systematic Review and Meta-analysis. JAMA Netw Open. 2020 Aug 3;3(8):e2013233. doi: 10.1001/jamanetworkopen.2020.13233.
Keller MB, Klein DN, Hirschfeld RM, Kocsis JH, McCullough JP, Miller I, First MB, Holzer CP 3rd, Keitner GI, Marin DB, et al. Results of the DSM-IV mood disorders field trial. Am J Psychiatry. 1995 Jun;152(6):843-9. doi: 10.1176/ajp.152.6.843.
Posner K, Brown GK, Stanley B, Brent DA, Yershova KV, Oquendo MA, Currier GW, Melvin GA, Greenhill L, Shen S, Mann JJ. The Columbia-Suicide Severity Rating Scale: initial validity and internal consistency findings from three multisite studies with adolescents and adults. Am J Psychiatry. 2011 Dec;168(12):1266-77. doi: 10.1176/appi.ajp.2011.10111704.
Eckstrand KL, Forbes EE, Bertocci MA, Chase HW, Greenberg T, Lockovich J, Stiffler R, Aslam HA, Graur S, Bebko G, Phillips ML. Anhedonia Reduction and the Association Between Left Ventral Striatal Reward Response and 6-Month Improvement in Life Satisfaction Among Young Adults. JAMA Psychiatry. 2019 Sep 1;76(9):958-965. doi: 10.1001/jamapsychiatry.2019.0864.
Marder SR, Meibach RC. Risperidone in the treatment of schizophrenia. Am J Psychiatry. 1994 Jun;151(6):825-35. doi: 10.1176/ajp.151.6.825.
Yung AR, Phillips LJ, Yuen HP, Francey SM, McFarlane CA, Hallgren M, McGorry PD. Psychosis prediction: 12-month follow up of a high-risk ("prodromal") group. Schizophr Res. 2003 Mar 1;60(1):21-32. doi: 10.1016/s0920-9964(02)00167-6.
Watson D, O'Hara MW, Simms LJ, Kotov R, Chmielewski M, McDade-Montez EA, Gamez W, Stuart S. Development and validation of the Inventory of Depression and Anxiety Symptoms (IDAS). Psychol Assess. 2007 Sep;19(3):253-68. doi: 10.1037/1040-3590.19.3.253.
Greene JG. Constructing a standard climacteric scale. Maturitas. 2008 Sep-Oct;61(1-2):78-84. doi: 10.1016/j.maturitas.2008.09.011.
Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989 May;28(2):193-213. doi: 10.1016/0165-1781(89)90047-4.
Gordon JL, Rubinow DR, Eisenlohr-Moul TA, Xia K, Schmidt PJ, Girdler SS. Efficacy of Transdermal Estradiol and Micronized Progesterone in the Prevention of Depressive Symptoms in the Menopause Transition: A Randomized Clinical Trial. JAMA Psychiatry. 2018 Feb 1;75(2):149-157. doi: 10.1001/jamapsychiatry.2017.3998.
Sarason IG, Johnson JH, Siegel JM. Assessing the impact of life changes: development of the Life Experiences Survey. J Consult Clin Psychol. 1978 Oct;46(5):932-46. doi: 10.1037//0022-006x.46.5.932. No abstract available.
Lindenstruth KA, Curtis CB, Allen JK. Recruitment of African American and white postmenopausal women into clinical trials: the beneficial effects of soy trial experience. Ethn Dis. 2006 Autumn;16(4):938-42.
Knutson B, Fong GW, Bennett SM, Adams CM, Hommer D. A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. Neuroimage. 2003 Feb;18(2):263-72. doi: 10.1016/s1053-8119(02)00057-5.
Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998 Jul;80(1):1-27. doi: 10.1152/jn.1998.80.1.1.
Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002 Jan 31;33(3):341-55. doi: 10.1016/s0896-6273(02)00569-x.
Knutson B, Fong GW, Adams CM, Varner JL, Hommer D. Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport. 2001 Dec 4;12(17):3683-7. doi: 10.1097/00001756-200112040-00016.
Crowther A, Smoski MJ, Minkel J, Moore T, Gibbs D, Petty C, Bizzell J, Schiller CE, Sideris J, Carl H, Dichter GS. Resting-state connectivity predictors of response to psychotherapy in major depressive disorder. Neuropsychopharmacology. 2015 Jun;40(7):1659-73. doi: 10.1038/npp.2015.12. Epub 2015 Jan 12.
Greene RK, Spanos M, Alderman C, Walsh E, Bizzell J, Mosner MG, Kinard JL, Stuber GD, Chandrasekhar T, Politte LC, Sikich L, Dichter GS. The effects of intranasal oxytocin on reward circuitry responses in children with autism spectrum disorder. J Neurodev Disord. 2018 Mar 27;10(1):12. doi: 10.1186/s11689-018-9228-y.
Choi EY, Yeo BT, Buckner RL. The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol. 2012 Oct;108(8):2242-63. doi: 10.1152/jn.00270.2012. Epub 2012 Jul 25.
Wang D, Liu H. Functional connectivity architecture of the human brain: not all the same. Neuroscientist. 2014 Oct;20(5):432-8. doi: 10.1177/1073858414543290. Epub 2014 Jul 16.
Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125-41. doi: 10.1089/brain.2012.0073. Epub 2012 Jul 19.
Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage. 2007 Aug 1;37(1):90-101. doi: 10.1016/j.neuroimage.2007.04.042. Epub 2007 May 3.
Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, Brooks DJ, Bench CJ, Grasby PM. Evidence for striatal dopamine release during a video game. Nature. 1998 May 21;393(6682):266-8. doi: 10.1038/30498.
Schott BH, Minuzzi L, Krebs RM, Elmenhorst D, Lang M, Winz OH, Seidenbecher CI, Coenen HH, Heinze HJ, Zilles K, Duzel E, Bauer A. Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. J Neurosci. 2008 Dec 24;28(52):14311-9. doi: 10.1523/JNEUROSCI.2058-08.2008.
Sander CY, Hooker JM, Catana C, Rosen BR, Mandeville JB. Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI. Neuropsychopharmacology. 2016 Apr;41(5):1427-36. doi: 10.1038/npp.2015.296. Epub 2015 Sep 21.
Urban NB, Slifstein M, Meda S, Xu X, Ayoub R, Medina O, Pearlson GD, Krystal JH, Abi-Dargham A. Imaging human reward processing with positron emission tomography and functional magnetic resonance imaging. Psychopharmacology (Berl). 2012 May;221(1):67-77. doi: 10.1007/s00213-011-2543-6. Epub 2011 Nov 4.
Weiland BJ, Heitzeg MM, Zald D, Cummiford C, Love T, Zucker RA, Zubieta JK. Relationship between impulsivity, prefrontal anticipatory activation, and striatal dopamine release during rewarded task performance. Psychiatry Res. 2014 Sep 30;223(3):244-52. doi: 10.1016/j.pscychresns.2014.05.015. Epub 2014 Jun 5.
Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996 Dec;4(3 Pt 1):153-8. doi: 10.1006/nimg.1996.0066.
Baker JH, Eisenlohr-Moul T, Wu YK, Schiller CE, Bulik CM, Girdler SS. Ovarian hormones influence eating disorder symptom variability during the menopause transition: A pilot study. Eat Behav. 2019 Dec;35:101337. doi: 10.1016/j.eatbeh.2019.101337. Epub 2019 Oct 25.
Eisenlohr-Moul TA, Rubinow DR, Schiller CE, Johnson JL, Leserman J, Girdler SS. Histories of abuse predict stronger within-person covariation of ovarian steroids and mood symptoms in women with menstrually related mood disorder. Psychoneuroendocrinology. 2016 May;67:142-52. doi: 10.1016/j.psyneuen.2016.01.026. Epub 2016 Feb 1.
Kinard JL, Mosner MG, Greene RK, Addicott M, Bizzell J, Petty C, Cernasov P, Walsh E, Eisenlohr-Moul T, Carter RM, McLamb M, Hopper A, Sukhu R, Dichter GS. Neural Mechanisms of Social and Nonsocial Reward Prediction Errors in Adolescents with Autism Spectrum Disorder. Autism Res. 2020 May;13(5):715-728. doi: 10.1002/aur.2273. Epub 2020 Feb 11.
Mosner MG, McLaurin RE, Kinard JL, Hakimi S, Parelman J, Shah JS, Bizzell J, Greene RK, Cernasov PM, Walsh E, Addicott MA, Eisenlohr-Moul T, Carter RM, Dichter GS. Neural Mechanisms of Reward Prediction Error in Autism Spectrum Disorder. Autism Res Treat. 2019 Jul 1;2019:5469191. doi: 10.1155/2019/5469191. eCollection 2019.
Walsh EC, Eisenlohr-Moul TA, Pedersen CA, Rubinow DR, Girdler SS, Dichter GS. Early Life Abuse Moderates the Effects of Intranasal Oxytocin on Symptoms of Premenstrual Dysphoric Disorder: Preliminary Evidence From a Placebo-Controlled Trial. Front Psychiatry. 2018 Nov 29;9:547. doi: 10.3389/fpsyt.2018.00547. eCollection 2018.
Kwapil TR. Social anhedonia as a predictor of the development of schizophrenia-spectrum disorders. J Abnorm Psychol. 1998 Nov;107(4):558-65. doi: 10.1037//0021-843x.107.4.558.
Wardenaar KJ, Giltay EJ, van Veen T, Zitman FG, Penninx BW. Symptom dimensions as predictors of the two-year course of depressive and anxiety disorders. J Affect Disord. 2012 Feb;136(3):1198-203. doi: 10.1016/j.jad.2011.11.037. Epub 2011 Dec 15.
Spijker J, Bijl RV, de Graaf R, Nolen WA. Determinants of poor 1-year outcome of DSM-III-R major depression in the general population: results of the Netherlands Mental Health Survey and Incidence Study (NEMESIS). Acta Psychiatr Scand. 2001 Feb;103(2):122-30. doi: 10.1034/j.1600-0447.2001.103002122.x.
McMakin DL, Olino TM, Porta G, Dietz LJ, Emslie G, Clarke G, Wagner KD, Asarnow JR, Ryan ND, Birmaher B, Shamseddeen W, Mayes T, Kennard B, Spirito A, Keller M, Lynch FL, Dickerson JF, Brent DA. Anhedonia predicts poorer recovery among youth with selective serotonin reuptake inhibitor treatment-resistant depression. J Am Acad Child Adolesc Psychiatry. 2012 Apr;51(4):404-11. doi: 10.1016/j.jaac.2012.01.011. Epub 2012 Mar 3.
Downar J, Geraci J, Salomons TV, Dunlop K, Wheeler S, McAndrews MP, Bakker N, Blumberger DM, Daskalakis ZJ, Kennedy SH, Flint AJ, Giacobbe P. Anhedonia and reward-circuit connectivity distinguish nonresponders from responders to dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depression. Biol Psychiatry. 2014 Aug 1;76(3):176-85. doi: 10.1016/j.biopsych.2013.10.026. Epub 2013 Nov 28.
Keller J, Young CB, Kelley E, Prater K, Levitin DJ, Menon V. Trait anhedonia is associated with reduced reactivity and connectivity of mesolimbic and paralimbic reward pathways. J Psychiatr Res. 2013 Oct;47(10):1319-28. doi: 10.1016/j.jpsychires.2013.05.015. Epub 2013 Jun 19.
Treadway MT, Zald DH. Parsing Anhedonia: Translational Models of Reward-Processing Deficits in Psychopathology. Curr Dir Psychol Sci. 2013 Jun 1;22(3):244-249. doi: 10.1177/0963721412474460.
Pizzagalli DA, Iosifescu D, Hallett LA, Ratner KG, Fava M. Reduced hedonic capacity in major depressive disorder: evidence from a probabilistic reward task. J Psychiatr Res. 2008 Nov;43(1):76-87. doi: 10.1016/j.jpsychires.2008.03.001. Epub 2008 Apr 22.
Berridge KC, Kringelbach ML. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology (Berl). 2008 Aug;199(3):457-80. doi: 10.1007/s00213-008-1099-6. Epub 2008 Mar 3.
Carl H, Walsh E, Eisenlohr-Moul T, Minkel J, Crowther A, Moore T, Gibbs D, Petty C, Bizzell J, Dichter GS, Smoski MJ. Sustained anterior cingulate cortex activation during reward processing predicts response to psychotherapy in major depressive disorder. J Affect Disord. 2016 Oct;203:204-212. doi: 10.1016/j.jad.2016.06.005. Epub 2016 Jun 4.
Schmidt PJ, Ben Dor R, Martinez PE, Guerrieri GM, Harsh VL, Thompson K, Koziol DE, Nieman LK, Rubinow DR. Effects of Estradiol Withdrawal on Mood in Women With Past Perimenopausal Depression: A Randomized Clinical Trial. JAMA Psychiatry. 2015 Jul;72(7):714-26. doi: 10.1001/jamapsychiatry.2015.0111.
Santoro N, Epperson CN, Mathews SB. Menopausal Symptoms and Their Management. Endocrinol Metab Clin North Am. 2015 Sep;44(3):497-515. doi: 10.1016/j.ecl.2015.05.001.
Stewart DE, Boydell K, Derzko C, Marshall V. Psychologic distress during the menopausal years in women attending a menopause clinic. Int J Psychiatry Med. 1992;22(3):213-20. doi: 10.2190/EWRH-4P7E-ACMH-3MEN.
Robinson GE. Psychotic and mood disorders associated with the perimenopausal period: epidemiology, aetiology and management. CNS Drugs. 2001;15(3):175-84. doi: 10.2165/00023210-200115030-00002.
Schmidt PJ, Haq N, Rubinow DR. A longitudinal evaluation of the relationship between reproductive status and mood in perimenopausal women. Am J Psychiatry. 2004 Dec;161(12):2238-44. doi: 10.1176/appi.ajp.161.12.2238.
Yoest KE, Cummings JA, Becker JB. Estradiol, dopamine and motivation. Cent Nerv Syst Agents Med Chem. 2014;14(2):83-9. doi: 10.2174/1871524914666141226103135.
Yoest KE, Quigley JA, Becker JB. Rapid effects of ovarian hormones in dorsal striatum and nucleus accumbens. Horm Behav. 2018 Aug;104:119-129. doi: 10.1016/j.yhbeh.2018.04.002. Epub 2018 Apr 22.
Chavez C, Hollaus M, Scarr E, Pavey G, Gogos A, van den Buuse M. The effect of estrogen on dopamine and serotonin receptor and transporter levels in the brain: an autoradiography study. Brain Res. 2010 Mar 19;1321:51-9. doi: 10.1016/j.brainres.2009.12.093. Epub 2010 Jan 14.
Brzezinski A, Brzezinski-Sinai NA, Seeman MV. Treating schizophrenia during menopause. Menopause. 2017 May;24(5):582-588. doi: 10.1097/GME.0000000000000772.
Dichter GS, Felder JN, Petty C, Bizzell J, Ernst M, Smoski MJ. The effects of psychotherapy on neural responses to rewards in major depression. Biol Psychiatry. 2009 Nov 1;66(9):886-97. doi: 10.1016/j.biopsych.2009.06.021. Epub 2009 Sep 2.
Walsh EC, Eisenlohr-Moul TA, Minkel J, Bizzell J, Petty C, Crowther A, Carl H, Smoski MJ, Dichter GS. Pretreatment brain connectivity during positive emotion upregulation predicts decreased anhedonia following behavioral activation therapy for depression. J Affect Disord. 2019 Jan 15;243:188-192. doi: 10.1016/j.jad.2018.09.065. Epub 2018 Sep 17.
Walsh E, Carl H, Eisenlohr-Moul T, Minkel J, Crowther A, Moore T, Gibbs D, Petty C, Bizzell J, Smoski MJ, Dichter GS. Attenuation of Frontostriatal Connectivity During Reward Processing Predicts Response to Psychotherapy in Major Depressive Disorder. Neuropsychopharmacology. 2017 Mar;42(4):831-843. doi: 10.1038/npp.2016.179. Epub 2016 Sep 2.
Willi J, Ehlert U. Assessment of perimenopausal depression: A review. J Affect Disord. 2019 Apr 15;249:216-222. doi: 10.1016/j.jad.2019.02.029. Epub 2019 Feb 11.
Rubinow DR, Schmidt PJ. Is there a role for reproductive steroids in the etiology and treatment of affective disorders? Dialogues Clin Neurosci. 2018 Sep;20(3):187-196. doi: 10.31887/DCNS.2018.20.3/drubinow.
Seeman MV, Gonzalez-Rodriguez A. Use of psychotropic medication in women with psychotic disorders at menopause and beyond. Curr Opin Psychiatry. 2018 May;31(3):183-192. doi: 10.1097/YCO.0000000000000410.
Schiller CE, Minkel J, Smoski MJ, Dichter GS. Remitted major depression is characterized by reduced prefrontal cortex reactivity to reward loss. J Affect Disord. 2013 Nov;151(2):756-762. doi: 10.1016/j.jad.2013.06.016. Epub 2013 Jul 5.
Walsh MJM, Gibson K, Hynd M, Eisenlohr-Moul TA, Walsh EC, Schiff L, Jarskog F, Lalush D, Dichter GS, Schiller CE. Perimenopausal Effects of Estradiol on Anhedonia and Psychosis Study (PEEPs): study protocol for a neural and molecular mechanistic clinical trial. Trials. 2023 Feb 28;24(1):150. doi: 10.1186/s13063-023-07166-7.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
21-2230
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.