Eccentric Chin Closure Exercise

NCT ID: NCT05240599

Last Updated: 2024-11-07

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

54 participants

Study Classification

INTERVENTIONAL

Study Start Date

2023-05-16

Study Completion Date

2024-05-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Swallowing is a set of functions that start with the acceptance of food and end with its delivery to the stomach. One of the most important problems associated with swallowing disorders is insufficient airway closure and the risk of aspiration. It is due to the inadequacy of laryngeal elevation that should occur during swallowing. Suprahyoid muscles are the most basic structures responsible for laryngeal elevation. Insufficient activation of the suprahyoid muscles causes insufficient laryngeal elevation.

The suprahyoid muscles consist of a group of muscles located in the anterior region of the neck between the hyoid bone and the mandible. The muscles which forming SH muscles m. digastricus, m. stylohyoideus, m. mylohyoideus and m. geniohyoideus muscles work as a group. SH muscles play a primary role in controlling hyoid bone movement during swallowing due to their relationship with the hyoid bone. It has been reported that the muscle with the highest potential to move the hyoid anteriorly is the geniohyoid muscle, and the mylohyoid muscle has the highest potential to move the hyoid in the superior direction. In addition, in another study, it was stated that since the geniohyoid and mylohyoid muscles have greater structural potential than other SH muscles for anterior and superior displacement of the hyoid, respectively. By understanding the potential for hyoid excursion arising from the structural properties of these muscles, therapists can target specific muscles with exercises designed to promote hyolaryngeal elevation.

Exercises such as Shaker exercise and resistance chin tuck in the literature either directly involve concentric training of the suprahyoid muscles or indirectly aim to gain strength by strengthening the neck flexors. In the light of the available evidence in the literature, eccentric training is also a viable method in swallowing rehabilitation. In eccentric training, the muscle is positioned by shortening its length. Eccentric training can be done by applying resistance to the jaw while the mouth is open and asking the mouth to be closed in a controlled manner against the resistance. In addition, swallowing exercise can be planned by adjusting the mouth opening and placing the SH muscles at the most appropriate angle to generate force. The aim of this study is to compare the effects of these three different exercises on suprahyoid muscle activation, muscle strength, dysphagia limit and perceived exertion level.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Swallowing is a set of functions that start with the acceptance of food and end with its delivery to the stomach. The oral preparation consists of 4 phases, namely the oral, pharyngeal and esophageal phase. Swallowing disorder (dysphagia) is defined as problems occurring in at least one of the swallowing phases. One of the most important problems associated with swallowing disorders is insufficient airway closure and the risk of aspiration. It is due to the inadequacy of laryngeal elevation that should occur during swallowing. Suprahyoid muscles are the most basic structures responsible for laryngeal elevation. Insufficient activation of the suprahyoid muscles causes insufficient laryngeal elevation.

The suprahyoid (SH) muscles consist of a group of muscles located in the anterior region of the neck between the hyoid bone and the mandible. The muscles which forming SH muscles m. digastricus, m. stylohyoideus, m. mylohyoideus and m. geniohyoideus muscles work as a group. SH muscles play a primary role in controlling hyoid bone movement during swallowing due to their relationship with the hyoid bone. It has been reported that the muscle with the highest potential to move the hyoid anteriorly is the geniohyoid muscle, and the mylohyoid muscle has the highest potential to move the hyoid in the superior direction. In addition, in another study, it was stated that since the geniohyoid and mylohyoid muscles have greater structural potential than other SH muscles for anterior and superior displacement of the hyoid, respectively, these two muscles can be targeted for neuromuscular stimulation preferably. Studies have also shown that exercise can increase motor unit involvement for certain functions. By understanding the potential for hyoid excursion arising from the structural properties of these muscles, therapists can target specific muscles with exercises designed to promote hyolaryngeal elevation.

Interventions to protect the airway in case of swallowing disorder are aimed at increasing the hyolaryngeal elevation. SH muscles provide elevation of the hyolaryngeal complex and also support the opening of the upper esophageal sphincter (UES). The cricopharyngeal muscle, which opens the UES, is opened by the contraction of the SH muscles and the anterior-superior traction of the hyoid and larynx. Insufficient elevation of the hyoid and larynx causes insufficient opening of the UES, resulting in an increase in the amount of pharyngeal residue and the risk of aspiration. Superior hyolaryngeal excursion during swallowing is thought to contribute to airway protection, preventing aspiration. Anterior hyalaryngeal excursion is thought to be associated with the patency of the UES. Exercises such as Shaker exercise and resistance chin tuck in the literature either directly involve concentric training of the suprahyoid muscles or indirectly aim to gain strength by strengthening the neck flexors.

Shaker Exercises were the first exercise developed to increase suprahyoid muscle activation. This exercise, which is characterized by raising the patient's head in the supine position, has been accepted as one of the most basic exercises in dysphagia rehabilitation for many years. In the following years, the Chin Tuck Against Resistance (CTAR) exercise was developed due to the challenging protocol and positional discomfort of the Shaker exercise. In the CTAR exercise, the patient is asked to press a standard size and inflatable ball, which he puts under his chin, towards his sternum. CTAR has become the most commonly used exercise in dysphagia rehabilitation. In the light of the available evidence in the literature, eccentric training is also a viable method in swallowing rehabilitation. In eccentric training, the muscle is positioned by shortening its length. Eccentric training can be done by applying resistance to the jaw while the mouth is open and asking the mouth to be closed in a controlled manner against the resistance. In addition, swallowing exercise can be planned by adjusting the mouth opening and placing the SH muscles at the most appropriate angle to generate force. The aim of this study is to compare the effects of these three different exercises on suprahyoid muscle activation, muscle strength, dysphagia limit and perceived exertion level.

H0 Hypothesis: There is no difference between CTAR, Shaker and Eccentric Chin Closure exercises in terms of suprahyoid muscle activation, suprahyoid muscle strength, dysphagia limit and perceived exertion level in healthy individuals.

H1 Hypothesis: There is a difference between CTAR, Shaker and Eccentric Chin Closure exercises in terms of suprahyoid muscle activation, suprahyoid muscle strength, dysphagia limit and perceived exertion level in healthy individuals.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Dysphagia

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

OTHER

Blinding Strategy

SINGLE

Participants

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Shaker

Shaker exercises consist of isotonic and isometric contractions of the neck flexor muscles. Participants will be asked to lie on their back with their knees straight. Participants will first wait for 60 seconds by lifting their head and looking at their feet. He will repeat the movement three times in total, resting for 60 seconds in between. Then, the participants will raise their heads again, look at the toes, and put their head back on the bed without waiting. By repeating this movement 30 times in total, the exercise program will be completed.

Individuals will perform this exercise, which consists of isometric components to be repeated 3 times and isotonic components to be performed once, in 3 times per day.

Group Type EXPERIMENTAL

Exercise Training

Intervention Type OTHER

Exercise training will be applied 3 times a day for 8 weeks.

Chin Tuck Against Resistance

In this exercise, participants have to place an inflatable ball with a diameter of 12 cm between their chin and sternum. This exercise has two subcomponents, isotonic and isometric. In the isometric component, individuals must compress the ball with maximum force between their chin and sternum, hold for 60 seconds, and rest for 60 seconds. One should repeat this isometric component 3 times. In the isotonic parameter, on the other hand, the participants must slowly squeeze the ball between their chin and sternum 30 times with the maximum force they can do. Participants will perform the exercise in an upright sitting position on a back-supported chair.

Individuals will perform this exercise, which consists of isometric components to be repeated 3 times and isotonic components repeated 10 times in 3 setsand 3 times per day.

Group Type EXPERIMENTAL

Exercise Training

Intervention Type OTHER

Exercise training will be applied 3 times a day for 8 weeks.

Eccentric Chin Closure

This exercise will be performed in the form of closing the chin against the manual resistance to be given from the tip of the mandible, starting from the maximum voluntary mouth opening. In this way, eccentric contraction will be created as the suprahyoid muscles will move from the shortest position to the longest position with resistance. Participants will perform the exercise by maintaining the upright posture in the upright sitting position on the back-supported chair. Volunteers will perform this exercise with 10 repetitions in 3 sets and 3 times per day.

Group Type EXPERIMENTAL

Exercise Training

Intervention Type OTHER

Exercise training will be applied 3 times a day for 8 weeks.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Exercise Training

Exercise training will be applied 3 times a day for 8 weeks.

Intervention Type OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Being between the ages of 18 - 35,
* Volunteering to participate in the study,
* Getting less than 3 points from the T-EAT-10 (Turkish Eating Assessment Test).

Exclusion Criteria

* Having disc herniation, mechanical neck pain or any pathology in the cervical region.
* Having a temporamandibular joint problem that may affect joint biomechanics and muscle functions.
* Having any neurological or systemic disease,
* Having undergone head and neck surgery or received radiotherapy.

Dischart Criteria

* Individuals who accepted the study and then stopped participating in the study
* Individuals who did not attend the assessments
* Individuals missing 5 days from the weekly follow-up of exercise sessions.
Minimum Eligible Age

18 Years

Maximum Eligible Age

35 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Hacettepe University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Emre CENGIZ

Research Assistant

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Emre CENGIZ, MSc, PhD(c)

Role: PRINCIPAL_INVESTIGATOR

Hacettepe University

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Hacettepe University

Ankara, , Turkey (Türkiye)

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Turkey (Türkiye)

References

Explore related publications, articles, or registry entries linked to this study.

Sonoda N, Tamatsu Y. Observation on the attachment of muscles onto the hyoid bone in human adults. Okajimas Folia Anat Jpn. 2008 Nov;85(3):79-90. doi: 10.2535/ofaj.85.79.

Reference Type BACKGROUND
PMID: 19227198 (View on PubMed)

Pearson WG Jr, Hindson DF, Langmore SE, Zumwalt AC. Evaluating swallowing muscles essential for hyolaryngeal elevation by using muscle functional magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2013 Mar 1;85(3):735-40. doi: 10.1016/j.ijrobp.2012.07.2370. Epub 2012 Sep 18.

Reference Type BACKGROUND
PMID: 22995662 (View on PubMed)

Molfenter SM, Steele CM. Physiological variability in the deglutition literature: hyoid and laryngeal kinematics. Dysphagia. 2011 Mar;26(1):67-74. doi: 10.1007/s00455-010-9309-x. Epub 2010 Oct 7.

Reference Type BACKGROUND
PMID: 20927634 (View on PubMed)

Ludlow CL, Humbert I, Saxon K, Poletto C, Sonies B, Crujido L. Effects of surface electrical stimulation both at rest and during swallowing in chronic pharyngeal Dysphagia. Dysphagia. 2007 Jan;22(1):1-10. doi: 10.1007/s00455-006-9029-4.

Reference Type BACKGROUND
PMID: 16718620 (View on PubMed)

Matsuo K, Palmer JB. Anatomy and physiology of feeding and swallowing: normal and abnormal. Phys Med Rehabil Clin N Am. 2008 Nov;19(4):691-707, vii. doi: 10.1016/j.pmr.2008.06.001.

Reference Type BACKGROUND
PMID: 18940636 (View on PubMed)

Pearson WG Jr, Langmore SE, Zumwalt AC. Evaluating the structural properties of suprahyoid muscles and their potential for moving the hyoid. Dysphagia. 2011 Dec;26(4):345-51. doi: 10.1007/s00455-010-9315-z. Epub 2010 Nov 11.

Reference Type BACKGROUND
PMID: 21069388 (View on PubMed)

Burnett TA, Mann EA, Stoklosa JB, Ludlow CL. Self-triggered functional electrical stimulation during swallowing. J Neurophysiol. 2005 Dec;94(6):4011-8. doi: 10.1152/jn.00025.2005. Epub 2005 Aug 17.

Reference Type BACKGROUND
PMID: 16107520 (View on PubMed)

Robbins J, Butler SG, Daniels SK, Diez Gross R, Langmore S, Lazarus CL, Martin-Harris B, McCabe D, Musson N, Rosenbek J. Swallowing and dysphagia rehabilitation: translating principles of neural plasticity into clinically oriented evidence. J Speech Lang Hear Res. 2008 Feb;51(1):S276-300. doi: 10.1044/1092-4388(2008/021).

Reference Type BACKGROUND
PMID: 18230851 (View on PubMed)

Sivarao DV, Goyal RK. Functional anatomy and physiology of the upper esophageal sphincter. Am J Med. 2000 Mar 6;108 Suppl 4a:27S-37S. doi: 10.1016/s0002-9343(99)00337-x.

Reference Type BACKGROUND
PMID: 10718448 (View on PubMed)

Jacob P, Kahrilas PJ, Logemann JA, Shah V, Ha T. Upper esophageal sphincter opening and modulation during swallowing. Gastroenterology. 1989 Dec;97(6):1469-78. doi: 10.1016/0016-5085(89)90391-0.

Reference Type BACKGROUND
PMID: 2583413 (View on PubMed)

Cook IJ, Dodds WJ, Dantas RO, Massey B, Kern MK, Lang IM, Brasseur JG, Hogan WJ. Opening mechanisms of the human upper esophageal sphincter. Am J Physiol. 1989 Nov;257(5 Pt 1):G748-59. doi: 10.1152/ajpgi.1989.257.5.G748.

Reference Type BACKGROUND
PMID: 2596608 (View on PubMed)

Steele CM, Bailey GL, Chau T, Molfenter SM, Oshalla M, Waito AA, Zoratto DC. The relationship between hyoid and laryngeal displacement and swallowing impairment. Clin Otolaryngol. 2011 Feb;36(1):30-6. doi: 10.1111/j.1749-4486.2010.02219.x.

Reference Type BACKGROUND
PMID: 21414151 (View on PubMed)

Kim Y, McCullough GH. Maximum hyoid displacement in normal swallowing. Dysphagia. 2008 Sep;23(3):274-9. doi: 10.1007/s00455-007-9135-y. Epub 2007 Oct 26.

Reference Type BACKGROUND
PMID: 17962998 (View on PubMed)

Logemann JA, Rademaker A, Pauloski BR, Kelly A, Stangl-McBreen C, Antinoja J, Grande B, Farquharson J, Kern M, Easterling C, Shaker R. A randomized study comparing the Shaker exercise with traditional therapy: a preliminary study. Dysphagia. 2009 Dec;24(4):403-11. doi: 10.1007/s00455-009-9217-0. Epub 2009 May 27.

Reference Type BACKGROUND
PMID: 19472007 (View on PubMed)

Yoon WL, Khoo JK, Rickard Liow SJ. Chin tuck against resistance (CTAR): new method for enhancing suprahyoid muscle activity using a Shaker-type exercise. Dysphagia. 2014 Apr;29(2):243-8. doi: 10.1007/s00455-013-9502-9. Epub 2013 Dec 15.

Reference Type BACKGROUND
PMID: 24337867 (View on PubMed)

Easterling C, Grande B, Kern M, Sears K, Shaker R. Attaining and maintaining isometric and isokinetic goals of the Shaker exercise. Dysphagia. 2005 Spring;20(2):133-8. doi: 10.1007/s00455-005-0004-2.

Reference Type BACKGROUND
PMID: 16172822 (View on PubMed)

Sze WP, Yoon WL, Escoffier N, Rickard Liow SJ. Evaluating the Training Effects of Two Swallowing Rehabilitation Therapies Using Surface Electromyography--Chin Tuck Against Resistance (CTAR) Exercise and the Shaker Exercise. Dysphagia. 2016 Apr;31(2):195-205. doi: 10.1007/s00455-015-9678-2. Epub 2016 Feb 2.

Reference Type BACKGROUND
PMID: 26837612 (View on PubMed)

Gao J, Zhang HJ. Effects of chin tuck against resistance exercise versus Shaker exercise on dysphagia and psychological state after cerebral infarction. Eur J Phys Rehabil Med. 2017 Jun;53(3):426-432. doi: 10.23736/S1973-9087.16.04346-X. Epub 2016 Nov 10.

Reference Type BACKGROUND
PMID: 27830923 (View on PubMed)

Friden J. Changes in human skeletal muscle induced by long-term eccentric exercise. Cell Tissue Res. 1984;236(2):365-72. doi: 10.1007/BF00214240.

Reference Type BACKGROUND
PMID: 6733763 (View on PubMed)

Roig M, O'Brien K, Kirk G, Murray R, McKinnon P, Shadgan B, Reid WD. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br J Sports Med. 2009 Aug;43(8):556-68. doi: 10.1136/bjsm.2008.051417. Epub 2008 Nov 3.

Reference Type BACKGROUND
PMID: 18981046 (View on PubMed)

Kilinc HE, Arslan SS, Demir N, Karaduman A. The Effects of Different Exercise Trainings on Suprahyoid Muscle Activation, Tongue Pressure Force and Dysphagia Limit in Healthy Subjects. Dysphagia. 2020 Aug;35(4):717-724. doi: 10.1007/s00455-019-10079-w. Epub 2019 Nov 25.

Reference Type BACKGROUND
PMID: 31768618 (View on PubMed)

Demir N, Serel Arslan S, Inal O, Karaduman AA. Reliability and Validity of the Turkish Eating Assessment Tool (T-EAT-10). Dysphagia. 2016 Oct;31(5):644-9. doi: 10.1007/s00455-016-9723-9. Epub 2016 Jul 12.

Reference Type BACKGROUND
PMID: 27405421 (View on PubMed)

Ws Coriolano Md, R Belo L, Carneiro D, G Asano A, Al Oliveira PJ, da Silva DM, G Lins O. Swallowing in patients with Parkinson's disease: a surface electromyography study. Dysphagia. 2012 Dec;27(4):550-5. doi: 10.1007/s00455-012-9406-0. Epub 2012 May 27.

Reference Type BACKGROUND
PMID: 22644084 (View on PubMed)

Aydogdu I, Kiylioglu N, Tarlaci S, Tanriverdi Z, Alpaydin S, Acarer A, Baysal L, Arpaci E, Yuceyar N, Secil Y, Ozdemirkiran T, Ertekin C. Diagnostic value of "dysphagia limit" for neurogenic dysphagia: 17 years of experience in 1278 adults. Clin Neurophysiol. 2015 Mar;126(3):634-43. doi: 10.1016/j.clinph.2014.06.035. Epub 2014 Jul 8.

Reference Type BACKGROUND
PMID: 25088732 (View on PubMed)

Iida T, Tohara H, Wada S, Nakane A, Sanpei R, Ueda K. Aging decreases the strength of suprahyoid muscles involved in swallowing movements. Tohoku J Exp Med. 2013 Nov;231(3):223-8. doi: 10.1620/tjem.231.223.

Reference Type BACKGROUND
PMID: 24240663 (View on PubMed)

Skinner JS, Hutsler R, Bergsteinova V, Buskirk ER. The validity and reliability of a rating scale of perceived exertion. Med Sci Sports. 1973 Summer;5(2):94-6. No abstract available.

Reference Type BACKGROUND
PMID: 4721013 (View on PubMed)

Chen MJ, Fan X, Moe ST. Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: a meta-analysis. J Sports Sci. 2002 Nov;20(11):873-99. doi: 10.1080/026404102320761787.

Reference Type BACKGROUND
PMID: 12430990 (View on PubMed)

Kane RL, Bershadsky B, Rockwood T, Saleh K, Islam NC. Visual Analog Scale pain reporting was standardized. J Clin Epidemiol. 2005 Jun;58(6):618-23. doi: 10.1016/j.jclinepi.2004.11.017.

Reference Type BACKGROUND
PMID: 15878476 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

ECC Exercise

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.