Medical Imaging and Thermal Treatment for Breast Tumors Using Harmonic Motion Imaging (HMI)
NCT ID: NCT05219695
Last Updated: 2025-05-31
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
36 participants
INTERVENTIONAL
2022-01-19
2026-05-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Feasibility Study of Ablathermy Focused Ultrasound (USF) of Breast Tumors Before Mastectomy
NCT01827969
Sonographic Visibility of Breast Biopsy Marker Clips Up to 4 Weeks After Placement
NCT00548392
Ultrasonic Perfusion Imaging in Post-mastectomy Irradiated Patients
NCT04992650
Radiofrequency of Breast Cancers in Non Surgical Patients
NCT00210223
Comparison of Microwave Ablation With Cryoablation for Breast Tumor
NCT03286413
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The efficacy and safety of FUS rely heavily on treatment monitoring. Treatment imaging techniques currently used include MRI and ultrasound Bmode imaging. Magnetic resonance imaging (MRI) thermometry is used to detect the temperature rise across the FUS treatment area. However, MRI guidance can be expensive and time-consuming compared to ultrasound-based HIFU guidance methods. Conventional B-mode based 'hyperecho' tracking can be challenging for HIFU monitoring, as it is sensitive to cavitation, which occurs at high temperatures.
HMI is an ultrasound elasticity method that can provide measurements of the locally generated mechanical response and inherent mechanical properties of tissues . The result is a new image that contains unique localized information on the relative stiffness in and around the tumor. The investigators have shown in pre-clinical data that HMI has the ability to monitor mechanical changes in tissue that occur with ablation. The combination of FUS with HMI monitoring is termed HMI guided FUS, or HMIgFUS.
This study aims to evaluate the HMI technique for monitoring FUS ablation in a clinical setting. Eligible and consenting patients will be imaged using HMI, and then will undergo HMIgFUS at a central position inside the tumor. The tumor will be imaged using HMI again following ablation. Following our study, the patients will undergo their scheduled surgery. The purpose of this study is to evaluate HMIgFUS in a lower risk setting, as the tumor will be excised following our study, to better inform future studies, in which surgery may not be needed.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
OTHER
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
HMIgFUS
Each study participants' tumors will be imaged using Harmonic Motion Imaging (HMI), an ultrasound elastography method. A central portion of the tumor will then be ablated and monitored using Harmonic Motion Imaging guided Focus Ultrasound (HMIgFUS). Only one portion of the tumor will be ablated; the other portions of the tumor, including tumor margins, will not be ablated. Following ablation, the tumor will be imaged again using HMI.
Harmonic motion imaging guided focused ultrasound (HMIgFUS)
Harmonic motion imaging guided focused ultrasound (HMIgFUS) is a combined treatment and imaging method, in which focused ultrasound (FUS) is used to thermally ablate tissue and harmonic motion imaging (HMI) is used for FUS guidance and monitoring. FUS applies high intensity focused ultrasound waves at its specified target to heat the tissue over a specified duration, causing cell death at the target area. HMI is an elasticity imaging technique which induces dynamic tissue vibrations at the target for tissue elasticity characterization.
One of the inclusion criteria for this study is that participants must be scheduled for surgical excision of their breast tumor. In this study, HMIgFUS will be applied to anesthetized participants immediately prior to their scheduled surgery. HMI imaging will also be performed immediately prior to and after HMIgFUS application.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Harmonic motion imaging guided focused ultrasound (HMIgFUS)
Harmonic motion imaging guided focused ultrasound (HMIgFUS) is a combined treatment and imaging method, in which focused ultrasound (FUS) is used to thermally ablate tissue and harmonic motion imaging (HMI) is used for FUS guidance and monitoring. FUS applies high intensity focused ultrasound waves at its specified target to heat the tissue over a specified duration, causing cell death at the target area. HMI is an elasticity imaging technique which induces dynamic tissue vibrations at the target for tissue elasticity characterization.
One of the inclusion criteria for this study is that participants must be scheduled for surgical excision of their breast tumor. In this study, HMIgFUS will be applied to anesthetized participants immediately prior to their scheduled surgery. HMI imaging will also be performed immediately prior to and after HMIgFUS application.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patients with fibroadenoma (benign tumor) or early-stage, non-metastatic breast cancer (stage I without the involvement of axillary lymph nodes)
* Scheduled to receive surgical resection of the tumor by the clinical care team (ideal target lesion upper boundary should be deeper than 1 cm below the skin, and the ideal size of the lesion should be 2-5 cm in diameter)
Exclusion Criteria
* Patients with breast implants
* Patients with a history of laser or radiation therapy to the targeted breast
* Patients who have received or are scheduled to receive thermal ablation or treatment of the tumor (other than surgery) as part of clinical care
18 Years
FEMALE
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Columbia University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Elisa Konofagou
Professor of Biomedical Engineering
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Elisa Konofagou, PhD
Role: PRINCIPAL_INVESTIGATOR
Professor of Biomedical Engineering
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Columbia University Irving Medical Center/NYP
New York, New York, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Han Y, Wang S, Payen T, Konofagou E. Fast lesion mapping during HIFU treatment using harmonic motion imaging guided focused ultrasound (HMIgFUS) in vitro and in vivo. Phys Med Biol. 2017 Apr 21;62(8):3111-3123. doi: 10.1088/1361-6560/aa6024. Epub 2017 Mar 21.
Han Y, Wang S, Hibshoosh H, Taback B, Konofagou E. Tumor characterization and treatment monitoring of postsurgical human breast specimens using harmonic motion imaging (HMI). Breast Cancer Res. 2016 May 9;18(1):46. doi: 10.1186/s13058-016-0707-3.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
AAAS9859
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.