Intranasal Dexmedetomidine Versus Oral Midazolam as Premedication for Propofol Sedation in Pediatric Patients Undergoing Magnetic Resonance Imaging
NCT ID: NCT05192629
Last Updated: 2022-03-24
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
PHASE3
250 participants
INTERVENTIONAL
2022-03-09
2023-07-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Currently, there are no specific recommendations for sedation for a paediatric MRI examination. In 2018, a retrospective study on the sedation protocol applied at Hôpital Universitaire des Enfants Reine Fabiola (H.U.D.E.R.F.) was conducted. In this protocol, premedication was done with oral midazolam and sedation with iterative boluses of propofol. This study concluded that the protocol in place was effective, but found that image acquisition during the procedure was interrupted in 25% of cases, largely due to involuntary movements of the child.
Preoperative stress can be emotionally traumatic for the child and may even extend beyond the perioperative period, hence the importance of premedication. For the most anxious children, non-pharmacological means of premedication are often not sufficient. Moreover, the literature shows that pharmacological premedication is useful in reducing parental separation anxiety and in facilitating induction of anaesthesia.
Midazolam is an effective premedication agent with some disadvantages (paradoxical reaction, low compliance of oral intake). Dexmedetomidine is a highly effective α-2 receptor agonist that can also be used as premedication according to the current literature. A report by the Pediatric Sedation Research Consortium (P.S.R.C.) shows that it has a safe profile and an incidence rate of serious adverse events of 0.36% in the paediatric population. Furthermore, administered intranasally, it is non-invasive, painless and has good bioavailability (over 80%).
The primary objective is to demonstrate the superiority of intranasal dexmedetomidine over oral midazolam as a premedication for bolus sedation of propofol in terms of the incidence of any event during the MRI procedure requiring temporary or permanent interruption of the examination.
The impact of dexmedetomidine on the amount of propofol administered and on the post-sedation period, the impact of external factors on the primary objective, the acceptance of intranasal premedication by the children and the quality of the MRI images will also be analyzed.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Intranasal Dexmedetomidine Versus Intranasal Midazolam for MRI In Pediatrics
NCT04652661
Safety and Efficacy of Dexmedetomidine (DEX) for Sedation of Subjects ≥1 Month to <17 Years Undergoing MRI Scans
NCT04237792
Dexmedetomidine in Children for Magnetic Resonance Imaging (MRI) Sedation
NCT02299232
Dexmedetomidine and Propofol for Pediatric MRI Sedation
NCT03513757
Airway Dimension Study in Children Undergoing MRI Sedated With Propofol and Dexmedetomidine
NCT01505933
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
QUADRUPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Group Midazolam
Administration of oral midazolam (0.25 mg/kg) as premedication before propofol-based sedation.
The patient receives an oral premedication containing 0.125mL/kg of midazolam (which corresponds to a dosage of 0.25mg/kg of Ozalin® 2mg/ml, with a maximum of 20 mg). He/she also receives an intranasal spray containing matching placebo of dexmedetomidine (NaCl 0.9%). The volume administered corresponds to 0.02 mL/kg (which corresponds to a dosage of 2 mcg/kg of pure dexmedetomidine 100 mcg/mL in group D).
Midazolam
Premedication by intranasal midazolam
Group Dexmedetomidine
Administration of intranasal dexmedetomidine as premedication before propofol-based sedation.
The patient receives an intranasal premedication containing 2 mcg/kg of dexmedetomidine. He/she also receives an oral solution containing matching placebo of midazolam (flavored-water prepared by the pharmacy). The volume administered corresponds to 0.125 mL/kg (which corresponds to a dosage of 0.25mg/kg of Ozalin® 2mg/mL, with a maximum of 20 mg or 10mL).
Dexmedetomidine
Premedication by intranasal dexmedetomidine
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Dexmedetomidine
Premedication by intranasal dexmedetomidine
Midazolam
Premedication by intranasal midazolam
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* ASA score I to IV,
* Requiring standard magnetic resonance imaging due to clinical condition, regardless of underlying pathology,
* Sedation performed by an anesthesiologist,
* Written informed consent in accordance with the ICH-GCP and local legislation prior to trial entry.
Exclusion Criteria
* Sedation carried out by a non-anesthesiologist,
* Emergency MRI,
* Presence of head trauma,
* Presence of nasal congestion or upper respiratory tract infection on the day of sedation,
* Multiple procedures during the same sedation (operating room, evoked potentials, etc.),
* Children with pathologies requiring airway safety,
* Any known allergic or hypersensitivity reaction to dexmedetomidine,
* Any known allergic or hypersensitivity reaction to benzodiazepines,
* Concomitant use of negative chronotropes, as Digoxine,
* Patient known with chronic respiratory failure or myasthenia,
* Patient known with anatomical abnormality of the airway, lung disease or sleep apnea syndrome
* Patient with known cardiac rhythm abnormality or cardio-vascular disease,
* Patient with known hepatic disorder or chronic kidney disease,
* Patient with hypotension or bradycardia on the day of the examination,
* Patient with a BMI \> 97th percentile (which corresponds to overweight, including obesity).
6 Months
6 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Brugmann University Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Denis SCHMARTZ
Head, department of Anesthesiology
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Hôpital Universitaire des Enfants Reine Fabiola
Brussels, , Belgium
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Cote CJ, Wilson S; AMERICAN ACADEMY OF PEDIATRICS; AMERICAN ACADEMY OF PEDIATRIC DENTISTRY. Guidelines for Monitoring and Management of Pediatric Patients Before, During, and After Sedation for Diagnostic and Therapeutic Procedures: Update 2016. Pediatrics. 2016 Jul;138(1):e20161212. doi: 10.1542/peds.2016-1212.
Gutmann A, Pessenbacher K, Gschanes A, Eggenreich U, Wargenau M, Toller W. Propofol anesthesia in spontaneously breathing children undergoing magnetic resonance imaging: comparison of two propofol emulsions. Paediatr Anaesth. 2006 Mar;16(3):266-74. doi: 10.1111/j.1460-9592.2005.01777.x.
Jung SM. Drug selection for sedation and general anesthesia in children undergoing ambulatory magnetic resonance imaging. Yeungnam Univ J Med. 2020 Jul;37(3):159-168. doi: 10.12701/yujm.2020.00171. Epub 2020 Apr 17.
Yip P, Middleton P, Cyna AM, Carlyle AV. Non-pharmacological interventions for assisting the induction of anaesthesia in children. Cochrane Database Syst Rev. 2009 Jul 8;(3):CD006447. doi: 10.1002/14651858.CD006447.pub2.
Ghai B, Jain K, Saxena AK, Bhatia N, Sodhi KS. Comparison of oral midazolam with intranasal dexmedetomidine premedication for children undergoing CT imaging: a randomized, double-blind, and controlled study. Paediatr Anaesth. 2017 Jan;27(1):37-44. doi: 10.1111/pan.13010. Epub 2016 Oct 13.
Chorney JM, Kain ZN. Behavioral analysis of children's response to induction of anesthesia. Anesth Analg. 2009 Nov;109(5):1434-40. doi: 10.1213/ane.0b013e3181b412cf. Epub 2009 Aug 27.
Leroy PL, Costa LR, Emmanouil D, van Beukering A, Franck LS. Beyond the drugs: nonpharmacologic strategies to optimize procedural care in children. Curr Opin Anaesthesiol. 2016 Mar;29 Suppl 1:S1-13. doi: 10.1097/ACO.0000000000000312.
Sadeghi A, Khaleghnejad Tabari A, Mahdavi A, Salarian S, Razavi SS. Impact of parental presence during induction of anesthesia on anxiety level among pediatric patients and their parents: a randomized clinical trial. Neuropsychiatr Dis Treat. 2017 Feb 20;12:3237-3241. doi: 10.2147/NDT.S119208. eCollection 2017.
Wollin SR, Plummer JL, Owen H, Hawkins RM, Materazzo F. Predictors of preoperative anxiety in children. Anaesth Intensive Care. 2003 Feb;31(1):69-74. doi: 10.1177/0310057X0303100114.
Jun JH, Kim KN, Kim JY, Song SM. The effects of intranasal dexmedetomidine premedication in children: a systematic review and meta-analysis. Can J Anaesth. 2017 Sep;64(9):947-961. doi: 10.1007/s12630-017-0917-x. Epub 2017 Jun 21.
Sun Y, Lu Y, Huang Y, Jiang H. Is dexmedetomidine superior to midazolam as a premedication in children? A meta-analysis of randomized controlled trials. Paediatr Anaesth. 2014 Aug;24(8):863-74. doi: 10.1111/pan.12391. Epub 2014 Mar 26.
Talon MD, Woodson LC, Sherwood ER, Aarsland A, McRae L, Benham T. Intranasal dexmedetomidine premedication is comparable with midazolam in burn children undergoing reconstructive surgery. J Burn Care Res. 2009 Jul-Aug;30(4):599-605. doi: 10.1097/BCR.0b013e3181abff90.
Radhika KP, Sreejit MS, Ramadas KT. Efficacy of midazolam as oral premedication in children in comparison to triclofos sodium. Indian J Anaesth. 2016 Jun;60(6):415-9. doi: 10.4103/0019-5049.183389.
Mahmoud M, Barbi E, Mason KP. Dexmedetomidine: What's New for Pediatrics? A Narrative Review. J Clin Med. 2020 Aug 24;9(9):2724. doi: 10.3390/jcm9092724.
Petroz GC, Sikich N, James M, van Dyk H, Shafer SL, Schily M, Lerman J. A phase I, two-center study of the pharmacokinetics and pharmacodynamics of dexmedetomidine in children. Anesthesiology. 2006 Dec;105(6):1098-110. doi: 10.1097/00000542-200612000-00009.
Sriganesh K, Saini J, Theerth K, Venkataramaiah S. Airway Dimensions in Children with Neurological Disabilities During Dexmedetomidine and Propofol Sedation for Magnetic Resonance Imaging Study. Turk J Anaesthesiol Reanim. 2018 Jun;46(3):214-221. doi: 10.5152/TJAR.2017.48285. Epub 2017 Nov 27.
Berkenbosch JW. Options and Considerations for Procedural Sedation in Pediatric Imaging. Paediatr Drugs. 2015 Oct;17(5):385-99. doi: 10.1007/s40272-015-0140-6.
Anttila M, Penttila J, Helminen A, Vuorilehto L, Scheinin H. Bioavailability of dexmedetomidine after extravascular doses in healthy subjects. Br J Clin Pharmacol. 2003 Dec;56(6):691-3. doi: 10.1046/j.1365-2125.2003.01944.x.
Li BL, Zhang N, Huang JX, Qiu QQ, Tian H, Ni J, Song XR, Yuen VM, Irwin MG. A comparison of intranasal dexmedetomidine for sedation in children administered either by atomiser or by drops. Anaesthesia. 2016 May;71(5):522-8. doi: 10.1111/anae.13407. Epub 2016 Mar 3.
Mekitarian Filho E, Robinson F, de Carvalho WB, Gilio AE, Mason KP. Intranasal dexmedetomidine for sedation for pediatric computed tomography imaging. J Pediatr. 2015 May;166(5):1313-1315.e1. doi: 10.1016/j.jpeds.2015.01.036. Epub 2015 Mar 6.
van Hoorn CE, Flint RB, Skowno J, Davies P, Engelhardt T, Lalwani K, Olutoye O, Ista E, de Graaff JC. Off-label use of dexmedetomidine in paediatric anaesthesiology: an international survey of 791 (paediatric) anaesthesiologists. Eur J Clin Pharmacol. 2021 Apr;77(4):625-635. doi: 10.1007/s00228-020-03028-2. Epub 2020 Oct 29.
Kumar L, Kumar A, Panikkaveetil R, Vasu BK, Rajan S, Nair SG. Efficacy of intranasal dexmedetomidine versus oral midazolam for paediatric premedication. Indian J Anaesth. 2017 Feb;61(2):125-130. doi: 10.4103/0019-5049.199850.
Peng K, Wu SR, Ji FH, Li J. Premedication with dexmedetomidine in pediatric patients: a systematic review and meta-analysis. Clinics (Sao Paulo). 2014 Nov;69(11):777-86. doi: 10.6061/clinics/2014(11)12.
Kim HJ, Shin WJ, Park S, Ahn HS, Oh JH. The sedative effects of the intranasal administration of dexmedetomidine in children undergoing surgeries compared to other sedation methods: A systematic review and meta-analysis. J Clin Anesth. 2017 May;38:33-39. doi: 10.1016/j.jclinane.2017.01.014. Epub 2017 Jan 15.
Gupta A, Dalvi NP, Tendolkar BA. Comparison between intranasal dexmedetomidine and intranasal midazolam as premedication for brain magnetic resonance imaging in pediatric patients: A prospective randomized double blind trial. J Anaesthesiol Clin Pharmacol. 2017 Apr-Jun;33(2):236-240. doi: 10.4103/joacp.JOACP_204_16.
Cho JE, Kim WO, Chang DJ, Choi EM, Oh SY, Kil HK. Titrated propofol induction vs. continuous infusion in children undergoing magnetic resonance imaging. Acta Anaesthesiol Scand. 2010 Apr;54(4):453-7. doi: 10.1111/j.1399-6576.2009.02169.x. Epub 2009 Nov 23.
Nagoshi M, Reddy S, Bell M, Cresencia A, Margolis R, Wetzel R, Ross P. Low-dose dexmedetomidine as an adjuvant to propofol infusion for children in MRI: A double-cohort study. Paediatr Anaesth. 2018 Jul;28(7):639-646. doi: 10.1111/pan.13400. Epub 2018 Jun 7.
Mason KP, Park RS, Sullivan CA, Lukovits K, Halpin EM, Imbrescia ST, Cavanaugh D, Prescilla R, Fox VL. The synergistic effect of dexmedetomidine on propofol for paediatric deep sedation: A randomised trial. Eur J Anaesthesiol. 2021 May 1;38(5):541-547. doi: 10.1097/EJA.0000000000001350.
Sulton C, McCracken C, Simon HK, Hebbar K, Reynolds J, Cravero J, Mallory M, Kamat P. Pediatric Procedural Sedation Using Dexmedetomidine: A Report From the Pediatric Sedation Research Consortium. Hosp Pediatr. 2016 Sep;6(9):536-44. doi: 10.1542/hpeds.2015-0280. Epub 2016 Aug 11.
Mason KP. Sedation trends in the 21st century: the transition to dexmedetomidine for radiological imaging studies. Paediatr Anaesth. 2010 Mar;20(3):265-72. doi: 10.1111/j.1460-9592.2009.03224.x. Epub 2009 Dec 10.
Rosen DA, Daume JT. Short duration large dose dexmedetomidine in a pediatric patient during procedural sedation. Anesth Analg. 2006 Jul;103(1):68-9, table of contents. doi: 10.1213/01.ane.0000216289.52261.5e.
Tu Y, Liang Y, Xiao Y, Lv J, Guan R, Xiao F, Xie Y, Xiao Q. Dexmedetomidine attenuates the neurotoxicity of propofol toward primary hippocampal neurons in vitro via Erk1/2/CREB/BDNF signaling pathways. Drug Des Devel Ther. 2019 Feb 19;13:695-706. doi: 10.2147/DDDT.S188436. eCollection 2019.
Bhatt M, Kennedy RM, Osmond MH, Krauss B, McAllister JD, Ansermino JM, Evered LM, Roback MG; Consensus Panel on Sedation Research of Pediatric Emergency Research Canada (PERC) and the Pediatric Emergency Care Applied Research Network (PECARN). Consensus-based recommendations for standardizing terminology and reporting adverse events for emergency department procedural sedation and analgesia in children. Ann Emerg Med. 2009 Apr;53(4):426-435.e4. doi: 10.1016/j.annemergmed.2008.09.030. Epub 2008 Nov 20.
Malviya S, Voepel-Lewis T, Tait AR, Merkel S, Tremper K, Naughton N. Depth of sedation in children undergoing computed tomography: validity and reliability of the University of Michigan Sedation Scale (UMSS). Br J Anaesth. 2002 Feb;88(2):241-5. doi: 10.1093/bja/88.2.241.
Wabelo ON, Schmartz D, Giancursio M, De Pooter F, Caruso G, Fils JF, Van der Linden P. Prospective, randomized, double-blind, double-dummy, active-controlled, phase 3 clinical trial comparing the safety and efficacy of intranasal dexmedetomidine to oral midazolam as premedication for propofol sedation in pediatric patients undergoing magnetic resonance imaging: the MIDEX MRI trial. Trials. 2023 Aug 11;24(1):518. doi: 10.1186/s13063-023-07529-0.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
CHUB-PED-MIDEX_MRI
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.