Plasma Exchange in Covid-19 Patients With Anti-interferon Autoantibodies
NCT ID: NCT05182515
Last Updated: 2022-01-10
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
PHASE3
50 participants
INTERVENTIONAL
2021-12-22
2022-03-22
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Specific impairment of the interferon pathway has been identified in a subset of patients and is associated with high Covid-19 severity. This subset of patients presents preexisting autoimmune disease mediated by autoantibodies directed against IFN. It represents 10.2% (101/987) of patients admitted in ICU with COVID-19 pneumonia, and the observed mortality in this subgroup is 40%.
The investigators hypothesized that plasma exchanges (PE) would eliminate these autoantibodies while acting on other mechanisms of the pathogenesis of severe COVID-19, such as cytokine storm or hypercoagulability(7).
The EPIC trial aims to demonstrate the efficacy of plasma exchange in the subpopulation of patients with anti-interferon autoantibodies and severe COVID-19 hospitalized in intensive care and on oxygen therapy, high flow or not, receiving non-ventilation or invasive ventilation, on D28 survival.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Plasma Exchange Combination of Immunosuppressive Regimens for Auto-immune Hepatitis
NCT02874586
Plasma Exchange and Glucocorticoids for Treatment of Anti-Neutrophil Cytoplasm Antibody (ANCA) - Associated Vasculitis
NCT00987389
To Investigate Efficacy, Pharmacodynamics, and Safety of BC 007 in Participants With Long COVID
NCT05911009
Comparison Study of Two Rituximab Regimens in the Remission of ANCA Associated Vasculitis
NCT01731561
Immunogenicity of COVID-19 Vaccination in Immunocompromised Patients (Auto-COVID-VACC)
NCT05597761
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The severity of COVID-19 results from direct viral cytotoxicity, the accompanying inflammatory response associated with a state of hypercoagulability which contributes to lethal hypoxemic pneumonitis. During the SARS-CoV-2 replication phase, infected cells secrete chemokines and die by activating the immune system locally. A local inflammatory loop induces tissue destruction, which activates the immune system's circulating cells, leading to another amplifying loop called the cytokine storm. A high concentration of pro-inflammatory interleukins characterizes this cytokine storm. It induces an endothelial dysfunction that causes activation of the coagulation system and an increase in vascular permeability. These mechanisms lead to COVID-19 pneumopathy, and the pathologic examination reveals diffuse alveolar damage associated with a significant inflammatory infiltrate and microthrombi. These lesions cause pulmonary dysfunction and refractory hypoxia, which is the cause of mortality from COVID-19.
In these phenomena, the integrity of the type 1 interferon pathway seems to play a major role and more particularly in COVID-19. Patients in whom the type I or III interferon pathway is dysfunctional are particularly susceptible to viral damage. It is now known that dysfunction of one of the interferon pathways exposes the host to a severe viral infection such as fulminant viral hepatitis or severe influenza pneumonia caused. In a study published in September in Science, Professor Jean-Laurent Casanova's team found in 10.2% (101/987) of patients with COVID-19 pneumonia neutralizing autoantibodies directed against IFN-ω (13 patients), one of 13 types of IFN-α (36), or both (52); In this study, the authors show that these autoantibodies neutralized the ability of IFN type I to block SARS-CoV-2 infection. When a patient presents one of these autoantibodies, he is exposed to an increased mortality risk compared to the healthy population. It is estimated at 40% in the affected population versus less than 10% in the rest.
Plasma exchanges (PE) are a blood purification technique that eliminates auto-antibodies in the context of autoantibodies driven pathologies, particularly in intensive care such as autoimmune myasthenia gravis or Guillain Barré syndrome. This technique makes it possible to purify the plasma containing immunoglobulins, cytokines, chemokines, coagulation factors and replace it with plasma from healthy subjects or purified human albumin. The theoretical ability to remove some of the pro-inflammatory substances, toxins, and cellular components from the sick individual quickly identified plasma exchange as a potential therapy for COVID-19. The discovery of anti-interferon autoantibodies as a significant gravity factor leads us to hypothesize that PE would be even more beneficial in this subpopulation.
To date, eight randomized clinical trials are in progress evaluating the interest of plasma exchanges in COVID-19 on clinicaltrials.gov. The inclusion criteria in these studies are broad. As plasma exchanges are an expensive therapy with limited availability, it makes their use in all patients with severe COVID-19 impossible. In this study, the investigators propose to demonstrate the efficacy of PE in the subpopulation of patients with anti-interferon autoantibodies and severe COVID-19 hospitalized in intensive care and on oxygen therapy, high flow or not, receiving invasive or non-invasive ventilation on survival to D28.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
Approximately 50 participants will be randomized 1:1 to the Investigational or Control arm. Participants randomized to the Investigational arm will receive plasma exchanges (PE) for nearly three days in addition to standard of care (SOC), while participants in the Control arm will receive SOC only. The first plasma exchange session occurs within the first 120 hours of ICU admission.
Two interim analyses are planned.
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Standard of Care
Standard of care including Dexamethasone
No interventions assigned to this group
Therapeutic plasma exchanges
Drug: Therapeutic plasma exchanges at day 1, 3 and 5 plus Standard of care including Dexamethasone
Therapeutic plasma exchange
Plasma exchange techniques reported in COVID-19 vary from study to study. No consensus exists on the use of a specific technique.
The use of a central venous catheter will be left to the discretion of investigators. If so, central venous catheter will be inserted through the internal jugular or femoral route under ultrasound control by a trained operator. After radiographic control of the position of the catheter and the absence of complications in the placement of the catheter, plasma exchanges will be carried out.
Three plasma exchanges of 1.5 plasma volume will be carried out every 48 hours on D1, D3 and D5. Plasma volume will be assessed by this equation VP = (1-Hct)x70xweight Body(measured). The substitution volume will be 5% albumin as first intervention. The use of a hemofiltration or centrifugation technique will be left to the discretion of each center.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Therapeutic plasma exchange
Plasma exchange techniques reported in COVID-19 vary from study to study. No consensus exists on the use of a specific technique.
The use of a central venous catheter will be left to the discretion of investigators. If so, central venous catheter will be inserted through the internal jugular or femoral route under ultrasound control by a trained operator. After radiographic control of the position of the catheter and the absence of complications in the placement of the catheter, plasma exchanges will be carried out.
Three plasma exchanges of 1.5 plasma volume will be carried out every 48 hours on D1, D3 and D5. Plasma volume will be assessed by this equation VP = (1-Hct)x70xweight Body(measured). The substitution volume will be 5% albumin as first intervention. The use of a hemofiltration or centrifugation technique will be left to the discretion of each center.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Positive detection of anti-interferon antibodies.
3. Patient, family or deferred consent (emergency clause).
4. Affiliation to a social security scheme (or exemption from affiliation). Inclusions are possible also for protected patient (under guardianship and tutornship).
Exclusion Criteria
2. Minor patient
3. Participation in another interventional trial in progress, with the objective, even secondary, of reducing mortality
4. Indication to EPT for another associated pathology
5. Contra-indication to EPT, known allergy to albumin 5%.
6. Persons under court protection,
7. Disturbance of the haemostasis balance (PT\<50%, APTT\>1.5 and fibrinogen \<1g/L)
8. Patient presenting a hemorrhagic diathesis (intracranial or digestive bleeding or threatening the functional prognosis)
9. Any progressive and advanced pathology whose life expectancy is less than one month
10. Bacterial or viral infectious disease (HIV) explaining most of the aggravation
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Centre Hospitalier St Anne
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Mazeraud Aurélien, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
GHU Paris Psychiatrie et Neurosciences
Sharshar Tarek, MD, PhD
Role: STUDY_CHAIR
GHU Paris Psychiatrie et Neurosciences
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
GHU Paris Psychiatrie et Neurosciences
Paris, , France
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Aurélien Mazeraud, MD PHD
Role: primary
References
Explore related publications, articles, or registry entries linked to this study.
Tomazini BM, Maia IS, Cavalcanti AB, Berwanger O, Rosa RG, Veiga VC, Avezum A, Lopes RD, Bueno FR, Silva MVAO, Baldassare FP, Costa ELV, Moura RAB, Honorato MO, Costa AN, Damiani LP, Lisboa T, Kawano-Dourado L, Zampieri FG, Olivato GB, Righy C, Amendola CP, Roepke RML, Freitas DHM, Forte DN, Freitas FGR, Fernandes CCF, Melro LMG, Junior GFS, Morais DC, Zung S, Machado FR, Azevedo LCP; COALITION COVID-19 Brazil III Investigators. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA. 2020 Oct 6;324(13):1307-1316. doi: 10.1001/jama.2020.17021.
Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020 Jun;20(6):363-374. doi: 10.1038/s41577-020-0311-8. Epub 2020 Apr 28.
Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, Li WW, Li VW, Mentzer SJ, Jonigk D. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020 Jul 9;383(2):120-128. doi: 10.1056/NEJMoa2015432. Epub 2020 May 21.
Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, Dorgham K, Philippot Q, Rosain J, Beziat V, Manry J, Shaw E, Haljasmagi L, Peterson P, Lorenzo L, Bizien L, Trouillet-Assant S, Dobbs K, de Jesus AA, Belot A, Kallaste A, Catherinot E, Tandjaoui-Lambiotte Y, Le Pen J, Kerner G, Bigio B, Seeleuthner Y, Yang R, Bolze A, Spaan AN, Delmonte OM, Abers MS, Aiuti A, Casari G, Lampasona V, Piemonti L, Ciceri F, Bilguvar K, Lifton RP, Vasse M, Smadja DM, Migaud M, Hadjadj J, Terrier B, Duffy D, Quintana-Murci L, van de Beek D, Roussel L, Vinh DC, Tangye SG, Haerynck F, Dalmau D, Martinez-Picado J, Brodin P, Nussenzweig MC, Boisson-Dupuis S, Rodriguez-Gallego C, Vogt G, Mogensen TH, Oler AJ, Gu J, Burbelo PD, Cohen JI, Biondi A, Bettini LR, D'Angio M, Bonfanti P, Rossignol P, Mayaux J, Rieux-Laucat F, Husebye ES, Fusco F, Ursini MV, Imberti L, Sottini A, Paghera S, Quiros-Roldan E, Rossi C, Castagnoli R, Montagna D, Licari A, Marseglia GL, Duval X, Ghosn J; HGID Lab; NIAID-USUHS Immune Response to COVID Group; COVID Clinicians; COVID-STORM Clinicians; Imagine COVID Group; French COVID Cohort Study Group; Milieu Interieur Consortium; CoV-Contact Cohort; Amsterdam UMC Covid-19 Biobank; COVID Human Genetic Effort; Tsang JS, Goldbach-Mansky R, Kisand K, Lionakis MS, Puel A, Zhang SY, Holland SM, Gorochov G, Jouanguy E, Rice CM, Cobat A, Notarangelo LD, Abel L, Su HC, Casanova JL. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020 Oct 23;370(6515):eabd4585. doi: 10.1126/science.abd4585. Epub 2020 Sep 24.
Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, Ogishi M, Sabli IKD, Hodeib S, Korol C, Rosain J, Bilguvar K, Ye J, Bolze A, Bigio B, Yang R, Arias AA, Zhou Q, Zhang Y, Onodi F, Korniotis S, Karpf L, Philippot Q, Chbihi M, Bonnet-Madin L, Dorgham K, Smith N, Schneider WM, Razooky BS, Hoffmann HH, Michailidis E, Moens L, Han JE, Lorenzo L, Bizien L, Meade P, Neehus AL, Ugurbil AC, Corneau A, Kerner G, Zhang P, Rapaport F, Seeleuthner Y, Manry J, Masson C, Schmitt Y, Schluter A, Le Voyer T, Khan T, Li J, Fellay J, Roussel L, Shahrooei M, Alosaimi MF, Mansouri D, Al-Saud H, Al-Mulla F, Almourfi F, Al-Muhsen SZ, Alsohime F, Al Turki S, Hasanato R, van de Beek D, Biondi A, Bettini LR, D'Angio' M, Bonfanti P, Imberti L, Sottini A, Paghera S, Quiros-Roldan E, Rossi C, Oler AJ, Tompkins MF, Alba C, Vandernoot I, Goffard JC, Smits G, Migeotte I, Haerynck F, Soler-Palacin P, Martin-Nalda A, Colobran R, Morange PE, Keles S, Colkesen F, Ozcelik T, Yasar KK, Senoglu S, Karabela SN, Rodriguez-Gallego C, Novelli G, Hraiech S, Tandjaoui-Lambiotte Y, Duval X, Laouenan C; COVID-STORM Clinicians; COVID Clinicians; Imagine COVID Group; French COVID Cohort Study Group; CoV-Contact Cohort; Amsterdam UMC Covid-19 Biobank; COVID Human Genetic Effort; NIAID-USUHS/TAGC COVID Immunity Group; Snow AL, Dalgard CL, Milner JD, Vinh DC, Mogensen TH, Marr N, Spaan AN, Boisson B, Boisson-Dupuis S, Bustamante J, Puel A, Ciancanelli MJ, Meyts I, Maniatis T, Soumelis V, Amara A, Nussenzweig M, Garcia-Sastre A, Krammer F, Pujol A, Duffy D, Lifton RP, Zhang SY, Gorochov G, Beziat V, Jouanguy E, Sancho-Shimizu V, Rice CM, Abel L, Notarangelo LD, Cobat A, Su HC, Casanova JL. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020 Oct 23;370(6515):eabd4570. doi: 10.1126/science.abd4570. Epub 2020 Sep 24.
Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, Pere H, Charbit B, Bondet V, Chenevier-Gobeaux C, Breillat P, Carlier N, Gauzit R, Morbieu C, Pene F, Marin N, Roche N, Szwebel TA, Merkling SH, Treluyer JM, Veyer D, Mouthon L, Blanc C, Tharaux PL, Rozenberg F, Fischer A, Duffy D, Rieux-Laucat F, Kerneis S, Terrier B. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020 Aug 7;369(6504):718-724. doi: 10.1126/science.abc6027. Epub 2020 Jul 13.
Ciancanelli MJ, Huang SX, Luthra P, Garner H, Itan Y, Volpi S, Lafaille FG, Trouillet C, Schmolke M, Albrecht RA, Israelsson E, Lim HK, Casadio M, Hermesh T, Lorenzo L, Leung LW, Pedergnana V, Boisson B, Okada S, Picard C, Ringuier B, Troussier F, Chaussabel D, Abel L, Pellier I, Notarangelo LD, Garcia-Sastre A, Basler CF, Geissmann F, Zhang SY, Snoeck HW, Casanova JL. Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science. 2015 Apr 24;348(6233):448-53. doi: 10.1126/science.aaa1578. Epub 2015 Mar 26.
Dupuis S, Jouanguy E, Al-Hajjar S, Fieschi C, Al-Mohsen IZ, Al-Jumaah S, Yang K, Chapgier A, Eidenschenk C, Eid P, Al Ghonaium A, Tufenkeji H, Frayha H, Al-Gazlan S, Al-Rayes H, Schreiber RD, Gresser I, Casanova JL. Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet. 2003 Mar;33(3):388-91. doi: 10.1038/ng1097. Epub 2003 Feb 18.
Sancho-Shimizu V, Perez de Diego R, Jouanguy E, Zhang SY, Casanova JL. Inborn errors of anti-viral interferon immunity in humans. Curr Opin Virol. 2011 Dec;1(6):487-96. doi: 10.1016/j.coviro.2011.10.016.
Chevret S, Hughes RA, Annane D. Plasma exchange for Guillain-Barre syndrome. Cochrane Database Syst Rev. 2017 Feb 27;2(2):CD001798. doi: 10.1002/14651858.CD001798.pub3.
Gajdos P, Chevret S, Toyka K. Plasma exchange for myasthenia gravis. Cochrane Database Syst Rev. 2002;2002(4):CD002275. doi: 10.1002/14651858.CD002275.
Reeves HM, Winters JL. The mechanisms of action of plasma exchange. Br J Haematol. 2014 Feb;164(3):342-51. doi: 10.1111/bjh.12629. Epub 2013 Oct 30.
Khamis F, Al-Zakwani I, Al Hashmi S, Al Dowaiki S, Al Bahrani M, Pandak N, Al Khalili H, Memish Z. Therapeutic plasma exchange in adults with severe COVID-19 infection. Int J Infect Dis. 2020 Oct;99:214-218. doi: 10.1016/j.ijid.2020.06.064. Epub 2020 Jun 23.
Zhang L, Zhai H, Ma S, Chen J, Gao Y. Efficacy of therapeutic plasma exchange in severe COVID-19 patients. Br J Haematol. 2020 Aug;190(4):e181-e183. doi: 10.1111/bjh.16890. Epub 2020 Jun 12. No abstract available.
Lemaire A, Parquet N, Galicier L, Boutboul D, Bertinchamp R, Malphettes M, Dumas G, Mariotte E, Peraldi MN, Souppart V, Schlemmer B, Azoulay E, Canet E. Plasma exchange in the intensive care unit: Technical aspects and complications. J Clin Apher. 2017 Dec;32(6):405-412. doi: 10.1002/jca.21529. Epub 2017 Feb 1.
Tian S, Chang Z, Wang Y, Wu M, Zhang W, Zhou G, Zou X, Tian H, Xiao T, Xing J, Chen J, Han J, Ning K, Wu T. Clinical Characteristics and Reasons for Differences in Duration From Symptom Onset to Release From Quarantine Among Patients With COVID-19 in Liaocheng, China. Front Med (Lausanne). 2020 May 12;7:210. doi: 10.3389/fmed.2020.00210. eCollection 2020.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
D20-P060
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.