EUROSETS ECMO Study in Clinical Extracorporeal Life Support Applications
NCT ID: NCT05163925
Last Updated: 2025-07-02
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
30 participants
OBSERVATIONAL
2022-01-10
2025-07-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
All demographic and perioperative variables (ECMOLIFE SYSTEM -related and unrelated ECLS complications, performances of the ECMOLIFE SYSTEM) will be analyzed. Surgical techniques will be recorded. Follow-up information on survival and any adverse cardiac and cerebrovascular events will be gathered routinely by outpatient clinic and telephone calls until 30 days after ECLS initiation or hospital discharge.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effects of Blood Flow of Venoarterial Extracorporeal Membrane Oxygenation Life Support on Microcirculation
NCT03210818
Health-related Quality of Life in Adults After Veno-arterial Extra-Corporeal Membrane Oxygenation Which is a Salvage Therapy Used in Patients With Severe Respiratory or Cardiac Failure Who Have Not Responded to Maximal Conventional Medical Therapy
NCT04653298
Hemoperfusion in Extracorporeal Membrane Oxygenation (ECMO) Patients
NCT03729765
Monitoring of Cerebral Blood Flow in Patients on Extracorporeal Membrane Oxygenation
NCT05303363
Outcomes of Patients With Venoarterial Extracorporeal Membrane Oxygenation
NCT04039594
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Recently published studies reported that long-term prognosis of in-hospital survivors after ECMO support following cardiovascular surgery remains unsatisfactory, however, patients who survive have the chance to make a full recovery despite a very unfavorable prognosis without VA-ECMO. Predisposing risk factors influencing long-term survival are not fully known, however this knowledge is necessary for adequate patient selection and comprehensive decision-making prior to ECMO implantation in order to identify those patients who will truly benefit from ECMO support, since unrestrained use might disproportionately increase hospital costs and consume valuable resources.
Recently, the Extracorporeal Life Support Organization (ELSO) Registry reported a remarkable increase in the use of ECLS as a supportive therapy after cardiac surgery. However, a disappointing trend was observed with regards to the in-hospital survival rate, reaching only 15% in the latest period.
Despite this increase in use and new technological developments in this area, only a few comprehensive and dedicated reports about PC-ECLS have been presented. Nevertheless, PC-ECLS has represented the main indication for ECLS utilization and is characterized by specific aspects (duration and type of underlying disease, severity of comorbidities, indication and type of surgical procedure, modality of access and timing of implant, complication types and rates) when compared to other ECLS indication Cardiovascular diseases (CVD) are responsible for more than 4 million deaths in Europe per year. Thereby, CVD account for approximately 45% of mortality in Europe. Apart from medical and ethical aspects, this poses an economical disaster: annual costs of roughly 210 trillion USD. Among cardiovascular diseases, coronary heart disease alone is responsible for 1 million deaths per year. Myocardial infarction (MI) is often the initial manifestation of coronary heart disease, caused by myocardial ischemia and necrosis leading to an acute decrease of cardiac function. Clinically, patients in cardiogenic shock present hypotensive, unresponsive to intravenous fluid challenge and with clinical and laboratory signs of critical end organ malperfusion requiring pharmacologic and/or mechanical circulatory support.
Cardiogenic shock (CS) is the leading cause of death after myocardial infarction and occurs in 5-10% of all cases of MI. Trials such as SHOCK, IABP-SHOCK II and IMPRESS in Severe Shock all revealed a one-year mortality of approximately 50%, which reflects constant mortality rates over the last 20 years, in spite of the applied therapeutic strategies and devices.
The unacceptably high mortality and morbidity in CS is an unsolved clinical problem despite all available treatment options.
Protected PCI is the application of Mechanical Circulatory Support (MCS) during percutaneous coronary intervention in high-risk patients, meaning that in such cases MCS systems are implanted prophylactically despite hemodynamic stability to avoid deleterious complications. The overall patient condition and temporary impairment based on the acute situation of an underlying myocardial infarction or coronary ischemia, without a manifested cardiogenic shock, are potential reasons for a "prophylactic" use of MCS.
Due to the increasing complexity of procedures and patients, feasibility of such interventions is becoming more dependent on the availability of MCS, in order to guarantee hemodynamic support during revascularization. Safety and outcome of such high-risk PCIs can potentially be improved by the application of MCS and the onset of complications such as arrhythmias, hemodynamic instability and related complications during the procedure can be reduced.
In Patient without ROSC (return of spontaneous circulation) during CPR, reestablishment of circulation by emergent VA-ECLS implantation may be indicated, since eCPR is able to improve the outcome of patients after prolonged resuscitation and no-ROSC scenario.
In 2019, at the Medical University of Vienna 25 patients were treated with eCPR (approximately 9% of all CPR-patients), 20 of these patients after OHCA (out of hospital cardiac arrest). Five patients (20%) survived with a good neurologic outcome.
In the eCPR setting, time between circulatory arrest and its recovery by the ECMO circuit, is a major crucial and impacting factor as well. The ease of use in terms of device implantation would be of high importance in those cases in particular.
In summary, for every indication, devices used in ECLS require maximum reliability and must be able to generate adequate flow for full circulatory support and minimize blood trauma especially in the setting of prolonged support. Additionally, handling and monitoring should be non-complicated, the need for frequent patient transports (operating room - ICU - remote hospital facilities as required) should be taken into account. New devices should be evaluated considering these factors- next to assessment of outcome and device-related and unrelated ECLS complications.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_ONLY
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
EUROSETS ECMOLIFE SYSTEM
Thirty consecutive patients that require ECLS and who receive the EUROSETS ECMOLIFE SYSTEM will be included. ECMOLIFE System is a perfusion system enabling operation and monitoring of extracorporeal circulation. ECMOLIFE System operates, powers, controls and regulates ECMOLIFE Centrifugal Pump which represents the disposable blood pump. ECMOLIFE System, when used in combination with ECMOLIFE Centrifugal Pump, is suitable for full or partial cardiac, circulatory and pulmonary support.
ECMOLIFE System is composed by an active programmable console (ECMOLIFE Console), a bearing-less motor driver (ECMOLIFE Motor driver), and sensors for blood parameters detection (flow rate, pressure, temperature, SvO2 and Hb). The console is equipped with an integrated back-up which in case of primary unit failure may be operated in combination with a back-up motor driver and flowmeter (besides, the ECMOLIFE system includes an Heater cooler device).
Eurosets ECMO Life System
ECMOLIFE System in combination with ECMOLIFE Centrifugal Pump and ECC (extra-corporeal-circulation) Tubing Set is intended to pump blood through the extracorporeal circuit to provide extracorporeal circulation.
ECMOLIFE System must be used only in combination with ECMOLIFE Centrifugal Pump.
ECMOLIFE System is intended to operate in the following hospital environments: Operating Room, Catheter Laboratory, Emergency Room, Intensive Care Unit and during intra-hospital patient transportation from one to another Unit.
ECMOLIFE System is intended to be used by qualified healthcare professionals specifically trained in the field of extracorporeal circulation: Perfusionists (Thoracic Cardiovascular Surgery - OR), Intensivists, ICU Nurses (ICU), Emergency physicians / Intensivists (ER), Cardiologist (CathLab).
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Eurosets ECMO Life System
ECMOLIFE System in combination with ECMOLIFE Centrifugal Pump and ECC (extra-corporeal-circulation) Tubing Set is intended to pump blood through the extracorporeal circuit to provide extracorporeal circulation.
ECMOLIFE System must be used only in combination with ECMOLIFE Centrifugal Pump.
ECMOLIFE System is intended to operate in the following hospital environments: Operating Room, Catheter Laboratory, Emergency Room, Intensive Care Unit and during intra-hospital patient transportation from one to another Unit.
ECMOLIFE System is intended to be used by qualified healthcare professionals specifically trained in the field of extracorporeal circulation: Perfusionists (Thoracic Cardiovascular Surgery - OR), Intensivists, ICU Nurses (ICU), Emergency physicians / Intensivists (ER), Cardiologist (CathLab).
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* VA-ECLS application using the EUROSETS ECMOLIFE SYSTEM (e.g. cardiogenic shock, post cardiotomy low cardiac output syndrome, cardiac arrest, high risk percutaneous coronary intervention, eCPR)
Exclusion Criteria
* Pregnant and breastfeeding women
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Eurosets S.r.l.
INDUSTRY
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Antonio Petralia, Dott.
Role: STUDY_DIRECTOR
Eurosets S.r.l.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Medical University of Vienna, Department of Cardiac Surgery
Vienna, , Austria
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Rastan AJ, Dege A, Mohr M, Doll N, Falk V, Walther T, Mohr FW. Early and late outcomes of 517 consecutive adult patients treated with extracorporeal membrane oxygenation for refractory postcardiotomy cardiogenic shock. J Thorac Cardiovasc Surg. 2010 Feb;139(2):302-11, 311.e1. doi: 10.1016/j.jtcvs.2009.10.043.
Elsharkawy HA, Li L, Esa WA, Sessler DI, Bashour CA. Outcome in patients who require venoarterial extracorporeal membrane oxygenation support after cardiac surgery. J Cardiothorac Vasc Anesth. 2010 Dec;24(6):946-51. doi: 10.1053/j.jvca.2010.03.020.
Whitman GJ. Extracorporeal membrane oxygenation for the treatment of postcardiotomy shock. J Thorac Cardiovasc Surg. 2017 Jan;153(1):95-101. doi: 10.1016/j.jtcvs.2016.08.024. Epub 2016 Aug 31.
Smedira NG, Blackstone EH. Postcardiotomy mechanical support: risk factors and outcomes. Ann Thorac Surg. 2001 Mar;71(3 Suppl):S60-6; discussion S82-5. doi: 10.1016/s0003-4975(00)02626-6.
Saxena P, Neal J, Joyce LD, Greason KL, Schaff HV, Guru P, Shi WY, Burkhart H, Li Z, Oliver WC, Pike RB, Haile DT, Schears GJ. Extracorporeal Membrane Oxygenation Support in Postcardiotomy Elderly Patients: The Mayo Clinic Experience. Ann Thorac Surg. 2015 Jun;99(6):2053-60. doi: 10.1016/j.athoracsur.2014.11.075. Epub 2015 Apr 10.
Fukuhara S, Takeda K, Garan AR, Kurlansky P, Hastie J, Naka Y, Takayama H. Contemporary mechanical circulatory support therapy for postcardiotomy shock. Gen Thorac Cardiovasc Surg. 2016 Apr;64(4):183-91. doi: 10.1007/s11748-016-0625-4. Epub 2016 Feb 13.
Sauer CM, Yuh DD, Bonde P. Extracorporeal membrane oxygenation use has increased by 433% in adults in the United States from 2006 to 2011. ASAIO J. 2015 Jan-Feb;61(1):31-6. doi: 10.1097/MAT.0000000000000160.
McCarthy FH, McDermott KM, Kini V, Gutsche JT, Wald JW, Xie D, Szeto WY, Bermudez CA, Atluri P, Acker MA, Desai ND. Trends in U.S. Extracorporeal Membrane Oxygenation Use and Outcomes: 2002-2012. Semin Thorac Cardiovasc Surg. 2015 Summer;27(2):81-8. doi: 10.1053/j.semtcvs.2015.07.005. Epub 2015 Jul 22.
Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J. 2016 Nov 7;37(42):3232-3245. doi: 10.1093/eurheartj/ehw334. Epub 2016 Aug 14. No abstract available.
Timmis A, Townsend N, Gale C, Grobbee R, Maniadakis N, Flather M, Wilkins E, Wright L, Vos R, Bax J, Blum M, Pinto F, Vardas P; ESC Scientific Document Group. European Society of Cardiology: Cardiovascular Disease Statistics 2017. Eur Heart J. 2018 Feb 14;39(7):508-579. doi: 10.1093/eurheartj/ehx628.
Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE, Mossialos EA, Maggioni AP, Kazakiewicz D, May HT, De Smedt D, Flather M, Zuhlke L, Beltrame JF, Huculeci R, Tavazzi L, Hindricks G, Bax J, Casadei B, Achenbach S, Wright L, Vardas P; European Society of Cardiology. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur Heart J. 2020 Jan 1;41(1):12-85. doi: 10.1093/eurheartj/ehz859.
Harjola VP, Lassus J, Sionis A, Kober L, Tarvasmaki T, Spinar J, Parissis J, Banaszewski M, Silva-Cardoso J, Carubelli V, Di Somma S, Tolppanen H, Zeymer U, Thiele H, Nieminen MS, Mebazaa A; CardShock Study Investigators; GREAT network. Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur J Heart Fail. 2015 May;17(5):501-9. doi: 10.1002/ejhf.260. Epub 2015 Mar 28.
van Diepen S, Katz JN, Albert NM, Henry TD, Jacobs AK, Kapur NK, Kilic A, Menon V, Ohman EM, Sweitzer NK, Thiele H, Washam JB, Cohen MG; American Heart Association Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; Council on Quality of Care and Outcomes Research; and Mission: Lifeline. Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association. Circulation. 2017 Oct 17;136(16):e232-e268. doi: 10.1161/CIR.0000000000000525. Epub 2017 Sep 18.
Hochman JS, Sleeper LA, Webb JG, Sanborn TA, White HD, Talley JD, Buller CE, Jacobs AK, Slater JN, Col J, McKinlay SM, LeJemtel TH. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N Engl J Med. 1999 Aug 26;341(9):625-34. doi: 10.1056/NEJM199908263410901.
Thiele H, Zeymer U, Neumann FJ, Ferenc M, Olbrich HG, Hausleiter J, Richardt G, Hennersdorf M, Empen K, Fuernau G, Desch S, Eitel I, Hambrecht R, Fuhrmann J, Bohm M, Ebelt H, Schneider S, Schuler G, Werdan K; IABP-SHOCK II Trial Investigators. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012 Oct 4;367(14):1287-96. doi: 10.1056/NEJMoa1208410. Epub 2012 Aug 26.
Thiele H, Schuler G, Neumann FJ, Hausleiter J, Olbrich HG, Schwarz B, Hennersdorf M, Empen K, Fuernau G, Desch S, de Waha S, Eitel I, Hambrecht R, Bohm M, Kurowski V, Lauer B, Minden HH, Figulla HR, Braun-Dullaeus RC, Strasser RH, Rochor K, Maier SK, Mollmann H, Schneider S, Ebelt H, Werdan K, Zeymer U; IABP-SHOCK II Trial Investigators. Intraaortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock: Design and rationale of the Intraaortic Balloon Pump in Cardiogenic Shock II (IABP-SHOCK II) trial. Am Heart J. 2015 Apr;169(4):e7-8. doi: 10.1016/j.ahj.2015.01.009. Epub 2015 Jan 30. No abstract available.
Ouweneel DM, Eriksen E, Sjauw KD, van Dongen IM, Hirsch A, Packer EJ, Vis MM, Wykrzykowska JJ, Koch KT, Baan J, de Winter RJ, Piek JJ, Lagrand WK, de Mol BA, Tijssen JG, Henriques JP. Percutaneous Mechanical Circulatory Support Versus Intra-Aortic Balloon Pump in Cardiogenic Shock After Acute Myocardial Infarction. J Am Coll Cardiol. 2017 Jan 24;69(3):278-287. doi: 10.1016/j.jacc.2016.10.022. Epub 2016 Oct 31.
Schober A, Sterz F, Herkner H, Wallmueller C, Weiser C, Hubner P, Testori C. Emergency extracorporeal life support and ongoing resuscitation: a retrospective comparison for refractory out-of-hospital cardiac arrest. Emerg Med J. 2017 May;34(5):277-281. doi: 10.1136/emermed-2015-205232. Epub 2017 Feb 17.
Poppe M, Schriefl C, Steinacher A, Clodi C, Warenits AM, Nurnberger A, Hubner P, Holzer M, Horvat J, Wiedemann D, Weiser C. Extracorporeal cardiopulmonary resuscitation at the emergency department: A retrospective patient selection evaluation. Eur J Anaesthesiol. 2020 Apr;37(4):280-285. doi: 10.1097/EJA.0000000000001142.
Ouweneel DM, Schotborgh JV, Limpens J, Sjauw KD, Engstrom AE, Lagrand WK, Cherpanath TGV, Driessen AHG, de Mol BAJM, Henriques JPS. Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis. Intensive Care Med. 2016 Dec;42(12):1922-1934. doi: 10.1007/s00134-016-4536-8. Epub 2016 Sep 19.
Wengenmayer T, Rombach S, Ramshorn F, Biever P, Bode C, Duerschmied D, Staudacher DL. Influence of low-flow time on survival after extracorporeal cardiopulmonary resuscitation (eCPR). Crit Care. 2017 Jun 22;21(1):157. doi: 10.1186/s13054-017-1744-8.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
ECMO Study CIP 4.0_07.03.2025
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.