Feasibility Pilot Clinical Trial of Omega-3 Supplement vs. Placebo for Post Covid-19 Recovery Among Health Care Workers
NCT ID: NCT05121766
Last Updated: 2024-09-19
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
TERMINATED
PHASE1
32 participants
INTERVENTIONAL
2022-01-10
2023-04-21
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Resolving Inflammatory Storm in COVID-19 Patients by Omega-3 Polyunsaturated Fatty Acids -
NCT04647604
Omega-3 Oil Use in COVID-19 Patients in Qatar
NCT04836052
Effects of a Prescription Omega-3 Fatty Acid Concentrate on Induced Inflammation
NCT01813110
Omega-3 Supplementation Decreases Inflammation and Fetal Obesity in Pregnancy
NCT00957476
Investigating the Effect of 4-week Omega-3 Polyunsaturated Fatty Acid Supplementation on Inflammation
NCT03210805
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Arm 1 - Omega-3 (Eicosapentaenoic acid - EPA + docosahexaenoic acid - DHA) - Dose is 2,100mg per day via 3 mini-capsules, 2x/day (a total of 6 mini-capsules per day). Each capsule has 252mg of EPA and 102mg of DHA.
Support for dosing:
* The American Heart Association (AHA) says taking up to 3 grams of fish oil daily in supplement form is considered safe;
* Up to 5,000mg of omega-3 fatty acids per day is considered safe;
* The U.S. Food and Drug Administration recommends consuming no more than 3 g/day of EPA and DHA combined, including up to 2 g/day from dietary supplements.
Arm 2 - Placebo - made from soybean oil (same dosing schedule as intervention arm)
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
QUADRUPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Study arm - Omega 3 supplement
Omega-3 (EPA+DHA) - Dose is 2,100mg per day via 3 mini-capsules, 2x/day (a total of 6 mini-capsules per day). Each capsule has 252mg of EPA and 102mg of DHA.
Omega-3 (EPA+DHA)
Dose is 2,100mg per day via 3 mini-capsules, 2x/day (a total of 6 mini-capsules per day).
Each capsule has 252mg of EPA and 102mg of DHA.
Control arm - placebo
3 Soybean Oil Placebo capsules 2x/day (a total of 6 mini-capsules per day).
Placebo
3 Soybean Oil Placebo capsules
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Omega-3 (EPA+DHA)
Dose is 2,100mg per day via 3 mini-capsules, 2x/day (a total of 6 mini-capsules per day).
Each capsule has 252mg of EPA and 102mg of DHA.
Placebo
3 Soybean Oil Placebo capsules
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age: 18+
* Willing to provide informed consent
* Formal diagnosis of COVID-19 via Polymerase Chain Reaction (PCR)test (if home test was done, team member must confirm via PCR test)
* Outpatient treatment only for covid-19; no hospitalization (most team members will be vaccinated and may likely have milder case)
* Must be experiencing 1+ ongoing covid-19 symptom being measured in this study (respiratory symptoms (shortness of breath, cough), fatigue, loss of taste, loss of smell)
* Symptom(s) have persisted for more than 12 weeks after initial infection
* Symptom(s) coincided with covid-19 infection and were not present prior to covid-19 infection
* Does not have soy allergy
* Does not have allergy to fish
* Able to participate in bi-weekly surveys in Research Electronic Data Capture (REDCap)
* Able to take own blood pressure and record it in bi-weekly REDCap survey
* Willing to participate in 12-week study and be assigned to either intervention or placebo arm
* Not currently taking an omega-3 supplement or other high-dose supplement (over 2,000 IU) with potential for aiding recovery of long covid syndrome (e.g. zinc, Vit C, Elderberry).
* Able to take/swallow six mini-pills daily
* Able and willing to give a spot blood sample (2 drops) at baseline and end of study.
Exclusion Criteria
* Not age 18+
* Unwilling to provide informed consent/ declined to take part
* No formal diagnosis of COVID-19 via PCR test (if home test was done, team member must confirm via PCR test)
* Were hospitalized for treatment of covid-19
* Not experiencing 1+ ongoing covid-19 symptom being measured in this study (respiratory symptoms (shortness of breath, cough), fatigue, loss of taste, loss of smell)
* Symptom(s) have persisted for more than 12 weeks after initial infection
* Symptom(s) did not coincide with covid-19 infection and were present prior to covid-19 infection
* Does have soy allergy
* Does have allergy to fish
* Not able to participate in bi-weekly surveys in REDCap
* Able to take own blood pressure and record it in bi-weekly REDCap survey
* Not willing to participate in 12-week study and be assigned to either intervention or placebo arm
* Currently taking an omega-3 supplement or other high-dose supplement (over 2,000 IU) with potential for aiding recovery of long covid syndrome (e.g. zinc, Vit C, Elderberry).
* Unable to take/swallow six mini-pills daily
* Not able and not willing to give a spot blood sample (2 drops) at baseline and end of study.
18 Years
89 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Hackensack Meridian Health
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Arunima Sarkar, MD
Role: PRINCIPAL_INVESTIGATOR
Hackensack Meridian Health
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Susan Dara
Edison, New Jersey, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
1. BourBour F, Mirzaei Dahka S, Gholamalizadeh M, et al. Nutrients in prevention, treatment, and management of viral infections; special focus on Coronavirus [published online ahead of print, 2020 Jul 9]. Arch Physiol Biochem. 2020;1-10. doi:10.1080/13813455.2020.1791188 2. Ali N. Role of vitamin D in preventing of COVID-19 infection, progression and severity [published online ahead of print, 2020 Jun 20]. J Infect Public Health. 2020;S1876-0341(20)30531-1. doi:10.1016/j.jiph.2020.06.021 3. Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19). Front Immunol. 2020;11:1451. Published 2020 Jun 19. doi:10.3389/fimmu.2020.01451 4.Torjesen I. Covid-19: Public health agencies review whether vitamin D supplements could reduce risk. BMJ. 2020;369:m2475. Published 2020 Jun 19. doi:10.1136/bmj.m2475 5.Hribar CA, Cobbold PH, Church FC. Potential Role of Vitamin D in the Elderly to Resist COVID-19 and to Slow Progression of Parkinson's Disease. Brain Sci. 2020;10(5):284. Published 2020 May 8. doi:10.3390/brainsci10050284 6. NIH Workshop on Post-Acute Sequelae of COVID-19. Accessed 25 Jan 2021. Available at: https://www.niaid.nih.gov/news-events/workshop-post-acute-sequelae-covid-19 7. Mayo Clinic: COVID-19 (coronavirus): Long-term Effects. Accessed 8 Jan 2021 from https://www.mayoclinic.org/diseases-conditions/coronavirus/in-depth/coronavirus-long-term-effects/art-20490351 8. Jacobs LG, Gourna Paleoudis E, Lesky-Di Bari D, et al. Persistence of symptoms and quality of life at 35 days after hospitalization for COVID-19 infection. PLoS One. 2020;15(12):e0243882. Published 2020 Dec 11. doi:10.1371/journal.pone.0243882 9. Halpin SJ, McIvor C, Whyatt G, Adams A, Harvey O, McLean L, Walshaw C, Kemp S, Corrado J, Singh R, Collins T, O'Connor RJ, Sivan M. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J Med Virol. 2021 Feb;93(2):1013-1022. doi: 10.1002/jmv.26368. Epub 2020 Aug 17. PMID: 32729939. 10. Garrigues E, Janvier P, Kherabi Y, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect. 2020;81(6):e4-e6. doi:10.1016/j.jinf.2020.08.029
11. CDC Morbidity and Mortality Weekly Report: Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with Covid-19 in a Multistate Health Care Systems Network - United States - March-June 2020. Accessed on 25 Jan 2021 from https://www.cdc.gov/mmwr/volumes/69/wr/mm6930e1.htm 12. Couzin-Frankel, J. From 'brain fog' to heart damage, COVID-19's lingering problems alarm scientists. July 31, 2020. Accessed 25 January 2021 from https://www.sciencemag.org/news/2020/07/brain-fog-heart-damage-covid-19-s-lingering-problems-alarm-scientists 13. Cooney, Elizabeth. Stat / Health Column: Long after the fire of a covid-19 infection, mental and neurological effects can still smolder. Accessed 26 Jan 2021 from https://www.statnews.com/2020/08/12/after-covid19-mental-neurological-effects-smolder/ 14. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265-1273. doi:10.1001/jamacardio.2020.3557 15. Carfì A, Bernabei R, Landi F, for the Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020;324(6):603-605. doi:10.1001/jama.2020.12603 16. Gemelli Against COVID-19 Post-Acute Care Study Group. Post-COVID-19 global health strategies: the need for an interdisciplinary approach. Aging Clin Exp Res. 2020 Aug;32(8):1613-1620. doi: 10.1007/s40520-020-01616-x. Epub 2020 Jun 11. PMID: 32529595; PMCID: PMC7287410. 17. Scaioli E, Liverani E, Belluzzi A. The Imbalance between n-6/n-3 Polyunsaturated Fatty Acids and Inflammatory Bowel Disease: A Comprehensive Review and Future Therapeutic Perspectives. Int. J. Mol. Sci. 2017; 18(12): e2619 18.Yaqoob, P. Mechanisms underlying the immunomodulatory effects of n-3 PUFA. Proc. Nutr. Soc. 2010; 69(3): 311-315 19.Rees D, Miles EA, Banerjee T, Wells SJ, Roynette CE, Wahle KW, Calder PC. Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: A comparison of young and older men. Am. J. Clin. Nutr. 2006; 83: 331-342 20. Endres S, Ghorbani R, Kelley VE, Georgilis K, Lonnemann G, van der Meer JW, Cannon JG, Rogers TS, Klempner MS, Weber PC, Schaefer EJ, Wolff SM, Dinarello CA. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N. Engl. J. Med. 1989; 320: 265-271
21.Kelei Li, Tao Huang, Jusheng Zheng, Duo Li. Effect of Marine-Derived n-3 Polyunsaturated Fatty Acids on C-Reactive Protein, Interleukin 6 and Tumor Necrosis Factor a: A Meta-Analysis. PLOS ONE, 2014;9(2): e88103 22. Mogensen TH, Melchjorsen J, Hollsberg P, Paludan SR. Activation of NF-kappa B in virus-infected macrophages is dependent on mitochondrial oxidative stress and intracellular calcium: Downstream involvement of the kinases TGF-beta-activated kinase 1, mitogen-activated kinase/extracellular signal-regulated kinase kinase 1, and I kappa B kinase. J Immunol. 2003; 170(12): 6224- 6233 23.Beyazit Y, Purnak T, Kekilli M. Role of nitric oxide in the treatment of non-alcoholic fatty liver by omega-3 fatty acids. Aliment. Pharmacol. Ther. 2010; 32(2): 303-304 24. Adli M, Merkhofer E, Cogswell P, Baldwin AS. IKKalpha and IKKbeta each function to regulate NFkappaB activation in the TNF-induced/canonical pathway. PLoS One. 2010 Feb 25; 5(2): e9428 25. Sabater J, Masclans JR, Sacanell J, Chacon P, Sabin P, Plnas M. Effects of an omega-3 fatty acid enriched lipid emulsion on eicosanoid synthesis in acute respiratory distress syndrome (ARDS): A prospective, randomized, double-blind, parallel group study Nutr Metab (Lond). 2011; 8(1): 22. 26. Dushianthan A, Rebecca Cusack V, Burgess A, Grocott M, Calder P. Immunonutrition for Adults With ARDS: Results From a Cochrane Systematic Review and Meta-Analysis, Respiratory Care January 2020; 65(1): 99-110 27. Langlois P, D'Aragon F, Hardy G, Manzanares W. Omega-3 polyunsaturated fatty acids in critically ill patients with acute respiratory distress syndrome: A systematic review and meta-analysis. Nutrition. 2019; 61: 84-92 28. Chen H, Wang S, Zhao Y, Luo Y, Tong H, Su L. Correlation analysis of omega-3 fatty acids and mortality of sepsis and sepsis-induced ARDS in adults: data from previous randomized controlled trials. Nutr J. 2018; 17(1): 57 29. NBC News, NJ Gov. Murphy says state is hardest hit by coronavirus in U.S. May 12, 2020. Accessed at: https://www.nbcnews.com/video/new-jersey-gov-murphy-says-state-is-hardest-hit-by-coronavirus-in-u-s-83346501863 30. NJ Department of Health / Covid-19 Dashboard. Accessed 8 Jan 2021 from https://covid19.nj.gov/
31. Barrett, E.S., Horton, D.B., Roy, J. et al. Prevalence of SARS-CoV-2 infection in previously undiagnosed health care workers in New Jersey, at the onset of the U.S. COVID-19 pandemic. BMC Infect Dis 20, 853 (2020). https://doi.org/10.1186/s12879-020-05587-2 32. Gooch, Kelly. Becker's Hospital Review: Covid-19 Sidelines over 100 New Jersey Hospital Workers. Dec 2, 2020. Accessed on 27 Jan 2021 from https://www.beckershospitalreview.com/workforce/covid-19-sidelines-over-100-new-jersey-hospital-workers.html. 33. American Heart Association: Professional Heart Daily (13 March 2017. Omega-3 Polyunsaturated Fatty Acid (Fish Oil) Supplementation and the Prevention of Clinical Cardiovascular Disease. Available at: https://professional.heart.org/en/science-news/omega-3-polyunsaturated-fatty-acid-fish-oil-supplementation-and-the-prevention 34. Scientific Opinion on the Tolerable Upper Intake Level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). (Source: EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) / 27 July 2012 https://doi.org/10.2903/j.efsa.2012.2815|) 35.U.S. Food and Drug Administration. Summary of qualified health claims subject to enforcement discretion. 2014. Available at: https://www.fda.gov/food/food-labeling-nutrition/qualified-health-claims-letters-enforcement-discretion 36. Insights From the OPERA Randomized Trial--Emmanuel Akintoye , Prince Sethi, William S. Harris , Paul A. Thompson , Roberto Marchioli , Luigi Tavazzi , Roberto Latini , Mias Pretorius , Nancy J. Brown , Peter Libby, Dariush Mozaffarian, Originally published5 Nov 2018https://doi.org/10.1161/CIRCOUTCOMES.118.004584Circulation: Cardiovascular Quality and Outcomes. 2018;11 37. n-3 Fatty acids affect haemostasis but do not increase the risk of bleeding: clinical observations and mechanistic insights: John K Wachira, Mark K Larson, William S Harris; PMID: 24472372, DOI: 10.1017/S000711451300425X 38. Elevated plasma glucose and lowered triglyceride levels from omega-3 fatty acid supplementation in type II diabetes ; K E Friday , M T Childs, C H Tsunehara, W Y Fujimoto, E L Bierman, J W Ensinck--Diabetes Care . 1989 Apr; 12(4):276-81. doi:10.2337/diacare.12.4.276. 39. Effects of Omega-3 Fatty Acid Supplementation on Glucose Control and Lipid Levels in Type 2 Diabetes: A Meta-Analysis, Cai Chen, 1 , 2 Xuefeng Yu, 1 and Shiying Shao 1 ,* Published online 2015 Oct 2. doi: 10.1371/journal.pone.0139565 40. Morris MC, Sacks F, Rosner B. Does fish oil lower blood pressure? A meta-analysis of controlled trials. Circulation. 1993;88(2):523-533. doi:10.1161/01.cir.88.2.523 41. Cleveland Heart Lab: Omega-3 Fatty Acids: A Natural Way to Lower Blood Pressure. Blog post 20 August 2015. Available at: https://www.clevelandheartlab.com/blog/horizons-omega-3-fatty-acids-a-natural-way-to-lower-blood-pressure/ 42. Overview of Omega-3 Fatty Acid Therapies; J. Chris Bradberry, PharmD and Daniel E. Hilleman, PharmD----PMID: 24391388 43. Link, R. Healthline blog: 8 Little-Known Side Effects of Too Much Fish Oil. 17 July 2018. Available at: https://www.healthline.com/nutrition/fish-oil-side-effects#section4 44. Khodarahmi M, Azadbakht L. Dietary fat intake and functional dyspepsia. Adv Biomed Res. 2016;5:76. Published 2016 Apr 21. doi:10.4103/2277-9175.180988
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Pro2020-1166
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.