Use of the Cardioprotectant Dexrazoxane During Congenital Heart Surgery

NCT ID: NCT04997291

Last Updated: 2021-08-09

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Clinical Phase

PHASE1

Total Enrollment

12 participants

Study Classification

INTERVENTIONAL

Study Start Date

2021-04-09

Study Completion Date

2022-01-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Cardiopulmonary bypass and arrest of the heart during cardiac surgery are necessary to allow the surgeon to perform heart operations. However, these processes can cause injury to the heart which may worsen post-operative outcomes. In fact, the effects of these injuries may continue after surgery, and lead to a long-term decrease in heart function. Neonates and young infants are at particular risk for this occurrence.

While much research has been done in adults looking for medicines that might protect the heart during surgery, few studies have been conducted in neonates and young infants. The investigators are testing Dexrazoxane, which has proven to be cardio-protective in pediatric cancer patients, in the hope that it may lessen cardiac injury during and after congenital heart surgery, and thereby improve outcomes in the neonatal and young infant population.

In order to accomplish this, the investigators must first determine how Dexrazoxane can be safely administered to young children with congenital heart disease.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Neonates and infants undergoing heart surgery with cardiopulmonary bypass and cardioplegic arrest experience both inflammation and myocardial ischemia-reperfusion \[IR\] injury. These processes provoke myocardial apoptosis and oxygen free radical formation which result in cardiac injury and dysfunction. Dexrazoxane \[DRZ\] is a derivative of EDTA that is approved for prevention of anthracycline-related cardiotoxicity. It provides cardioprotection through reduction of toxic reactive oxygen species \[ROS\], and suppression of apoptosis.

The investigators propose a 12-patient pilot to determine DRZ pharmacokinetics, and to collect additional safety data in the neonatal and infant population. Efficacy of cardioprotection will not be evaluated in this preliminary investigation, though the investigators will determine postoperative time to resolution of organ failure, development of low cardiac output syndrome, length of cardiac ICU and hospital stays, laboratory indices of myocardial injury and systemic inflammation, and echocardiographic cardiac dysfunction for safety purposes, and as a run-in to the larger, randomized, placebo controlled trial. Conducting this pilot could optimize team execution of the study protocol. In addition, results could further establish the safety of DRZ in the neonatal and infant populations.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Heart Defects, Congenital

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Dexrazoxane

Group Type EXPERIMENTAL

Dexrazoxane

Intervention Type DRUG

Twelve enrollees will be consecutively assigned to a dosing regimen of 400 mg/m2/dose. The medication will be administered in the operating room 30 minutes prior to starting cardiopulmonary bypass (dose #1), prior to aortic cross clamp removal (dose #2), and on the morning after surgery in the cardiac intensive care unit (dose #3).

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Dexrazoxane

Twelve enrollees will be consecutively assigned to a dosing regimen of 400 mg/m2/dose. The medication will be administered in the operating room 30 minutes prior to starting cardiopulmonary bypass (dose #1), prior to aortic cross clamp removal (dose #2), and on the morning after surgery in the cardiac intensive care unit (dose #3).

Intervention Type DRUG

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Zinecard

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* age ≤ 1 year
* open heart surgery requiring CPB and use of cardioplegia
* parent/guardian consent for study obtained
* surgery planned Monday-Friday

Exclusion Criteria

* gestational age \<36 weeks at time of enrollment
* known syndrome or genetic abnormality, except Trisomy 21
* single ventricle physiology
* concurrent enrollment in another research protocol
Minimum Eligible Age

0 Years

Maximum Eligible Age

1 Year

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Dell Children's Medical Center of Central Texas

OTHER

Sponsor Role collaborator

University of Texas at Austin

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Daniel Stromberg

Associate Professor

Responsibility Role PRINCIPAL_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Dell Children's Medical Center of Central Texas

Austin, Texas, United States

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

United States

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Daniel Stromberg, MD

Role: CONTACT

512-324-3357

Jacob Strelow, MPH

Role: CONTACT

757-268-2691

References

Explore related publications, articles, or registry entries linked to this study.

Chaney MA. Corticosteroids and cardiopulmonary bypass : a review of clinical investigations. Chest. 2002 Mar;121(3):921-31. doi: 10.1378/chest.121.3.921.

Reference Type BACKGROUND
PMID: 11888978 (View on PubMed)

Caputo M, Mokhtari A, Rogers CA, Panayiotou N, Chen Q, Ghorbel MT, Angelini GD, Parry AJ. The effects of normoxic versus hyperoxic cardiopulmonary bypass on oxidative stress and inflammatory response in cyanotic pediatric patients undergoing open cardiac surgery: a randomized controlled trial. J Thorac Cardiovasc Surg. 2009 Jul;138(1):206-14. doi: 10.1016/j.jtcvs.2008.12.028. Epub 2009 Feb 23.

Reference Type BACKGROUND
PMID: 19577081 (View on PubMed)

Hare JM. Oxidative stress and apoptosis in heart failure progression. Circ Res. 2001 Aug 3;89(3):198-200. No abstract available.

Reference Type BACKGROUND
PMID: 11485969 (View on PubMed)

Pasquali SK, Hall M, Li JS, Peterson ED, Jaggers J, Lodge AJ, Marino BS, Goodman DM, Shah SS. Corticosteroids and outcome in children undergoing congenital heart surgery: analysis of the Pediatric Health Information Systems database. Circulation. 2010 Nov 23;122(21):2123-30. doi: 10.1161/CIRCULATIONAHA.110.948737. Epub 2010 Nov 8.

Reference Type BACKGROUND
PMID: 21060075 (View on PubMed)

Robertson-Malt S, Afrane B, El Barbary M. Prophylactic steroids for pediatric open heart surgery. Cochrane Database Syst Rev. 2007 Oct 17;(4):CD005550. doi: 10.1002/14651858.CD005550.pub2.

Reference Type BACKGROUND
PMID: 17943866 (View on PubMed)

Graham EM, Atz AM, Butts RJ, Baker NL, Zyblewski SC, Deardorff RL, DeSantis SM, Reeves ST, Bradley SM, Spinale FG. Standardized preoperative corticosteroid treatment in neonates undergoing cardiac surgery: results from a randomized trial. J Thorac Cardiovasc Surg. 2011 Dec;142(6):1523-9. doi: 10.1016/j.jtcvs.2011.04.019. Epub 2011 May 20.

Reference Type BACKGROUND
PMID: 21600592 (View on PubMed)

Schroeder VA, Pearl JM, Schwartz SM, Shanley TP, Manning PB, Nelson DP. Combined steroid treatment for congenital heart surgery improves oxygen delivery and reduces postbypass inflammatory mediator expression. Circulation. 2003 Jun 10;107(22):2823-8. doi: 10.1161/01.CIR.0000070955.55636.25. Epub 2003 May 19.

Reference Type BACKGROUND
PMID: 12756159 (View on PubMed)

Checchia PA, Backer CL, Bronicki RA, Baden HP, Crawford SE, Green TP, Mavroudis C. Dexamethasone reduces postoperative troponin levels in children undergoing cardiopulmonary bypass. Crit Care Med. 2003 Jun;31(6):1742-5. doi: 10.1097/01.CCM.0000063443.32874.60.

Reference Type BACKGROUND
PMID: 12794414 (View on PubMed)

Clarizia NA, Manlhiot C, Schwartz SM, Sivarajan VB, Maratta R, Holtby HM, Gruenwald CE, Caldarone CA, Van Arsdell GS, McCrindle BW. Improved outcomes associated with intraoperative steroid use in high-risk pediatric cardiac surgery. Ann Thorac Surg. 2011 Apr;91(4):1222-7. doi: 10.1016/j.athoracsur.2010.11.005.

Reference Type BACKGROUND
PMID: 21440149 (View on PubMed)

Clancy RR, McGaurn SA, Goin JE, Hirtz DG, Norwood WI, Gaynor JW, Jacobs ML, Wernovsky G, Mahle WT, Murphy JD, Nicolson SC, Steven JM, Spray TL. Allopurinol neurocardiac protection trial in infants undergoing heart surgery using deep hypothermic circulatory arrest. Pediatrics. 2001 Jul;108(1):61-70. doi: 10.1542/peds.108.1.61.

Reference Type BACKGROUND
PMID: 11433055 (View on PubMed)

Jin Z, Duan W, Chen M, Yu S, Zhang H, Feng G, Xiong L, Yi D. The myocardial protective effects of adenosine pretreatment in children undergoing cardiac surgery: a randomized controlled clinical trial. Eur J Cardiothorac Surg. 2011 May;39(5):e90-6. doi: 10.1016/j.ejcts.2010.12.052. Epub 2011 Feb 20.

Reference Type BACKGROUND
PMID: 21342773 (View on PubMed)

Walavalkar V, Evers E, Pujar S, Viralam K, Maiya S, Frerich S, John C, Rao S, Reddy C, Spronck B, Prinzen FW, Delhaas T, Vanagt WY. Preoperative Sildenafil administration in children undergoing cardiac surgery: a randomized controlled preconditioning study. Eur J Cardiothorac Surg. 2016 May;49(5):1403-10. doi: 10.1093/ejcts/ezv353. Epub 2015 Oct 13.

Reference Type BACKGROUND
PMID: 26464453 (View on PubMed)

Wu Q, Wang T, Chen S, Zhou Q, Li H, Hu N, Feng Y, Dong N, Yao S, Xia Z. Cardiac protective effects of remote ischaemic preconditioning in children undergoing tetralogy of fallot repair surgery: a randomized controlled trial. Eur Heart J. 2018 Mar 21;39(12):1028-1037. doi: 10.1093/eurheartj/ehx030.

Reference Type BACKGROUND
PMID: 28329231 (View on PubMed)

Tie HT, Luo MZ, Li ZH, Wang Q, Wu QC, Li Q, Zhang M. Remote Ischemic Preconditioning Fails to Benefit Pediatric Patients Undergoing Congenital Cardiac Surgery: A Meta-Analysis of Randomized Controlled Trials. Medicine (Baltimore). 2015 Oct;94(43):e1895. doi: 10.1097/MD.0000000000001895.

Reference Type BACKGROUND
PMID: 26512608 (View on PubMed)

James C, Millar J, Horton S, Brizard C, Molesworth C, Butt W. Nitric oxide administration during paediatric cardiopulmonary bypass: a randomised controlled trial. Intensive Care Med. 2016 Nov;42(11):1744-1752. doi: 10.1007/s00134-016-4420-6. Epub 2016 Sep 30.

Reference Type BACKGROUND
PMID: 27686343 (View on PubMed)

Ferreira R, Burgos M, Milei J, Llesuy S, Molteni L, Hourquebie H, Boveris A. Effect of supplementing cardioplegic solution with deferoxamine on reperfused human myocardium. J Thorac Cardiovasc Surg. 1990 Nov;100(5):708-14.

Reference Type BACKGROUND
PMID: 2232833 (View on PubMed)

Menasche P, Pasquier C, Bellucci S, Lorente P, Jaillon P, Piwnica A. Deferoxamine reduces neutrophil-mediated free radical production during cardiopulmonary bypass in man. J Thorac Cardiovasc Surg. 1988 Oct;96(4):582-9.

Reference Type BACKGROUND
PMID: 2845199 (View on PubMed)

Menasche P, Antebi H, Alcindor LG, Teiger E, Perez G, Giudicelli Y, Nordmann R, Piwnica A. Iron chelation by deferoxamine inhibits lipid peroxidation during cardiopulmonary bypass in humans. Circulation. 1990 Nov;82(5 Suppl):IV390-6.

Reference Type BACKGROUND
PMID: 2225430 (View on PubMed)

Zheng H, Dimayuga C, Hudaihed A, Katz SD. Effect of dexrazoxane on homocysteine-induced endothelial dysfunction in normal subjects. Arterioscler Thromb Vasc Biol. 2002 Jul 1;22(7):E15-8. doi: 10.1161/01.atv.0000023187.25914.5b.

Reference Type BACKGROUND
PMID: 12117747 (View on PubMed)

Junjing Z, Yan Z, Baolu Z. Scavenging effects of dexrazoxane on free radicals. J Clin Biochem Nutr. 2010 Nov;47(3):238-45. doi: 10.3164/jcbn.10-64. Epub 2010 Oct 29.

Reference Type BACKGROUND
PMID: 21103033 (View on PubMed)

Popelova O, Sterba M, Haskova P, Simunek T, Hroch M, Guncova I, Nachtigal P, Adamcova M, Gersl V, Mazurova Y. Dexrazoxane-afforded protection against chronic anthracycline cardiotoxicity in vivo: effective rescue of cardiomyocytes from apoptotic cell death. Br J Cancer. 2009 Sep 1;101(5):792-802. doi: 10.1038/sj.bjc.6605192. Epub 2009 Jul 21.

Reference Type BACKGROUND
PMID: 19623174 (View on PubMed)

Zhou L, Sung RY, Li K, Pong NH, Xiang P, Shen J, Ng PC, Chen Y. Cardioprotective effect of dexrazoxane in a rat model of myocardial infarction: anti-apoptosis and promoting angiogenesis. Int J Cardiol. 2011 Oct 20;152(2):196-201. doi: 10.1016/j.ijcard.2010.07.015. Epub 2010 Aug 6.

Reference Type BACKGROUND
PMID: 20692056 (View on PubMed)

Spagnuolo RD, Recalcati S, Tacchini L, Cairo G. Role of hypoxia-inducible factors in the dexrazoxane-mediated protection of cardiomyocytes from doxorubicin-induced toxicity. Br J Pharmacol. 2011 May;163(2):299-312. doi: 10.1111/j.1476-5381.2011.01208.x.

Reference Type BACKGROUND
PMID: 21232037 (View on PubMed)

Hasinoff BB, Schroeder PE, Patel D. The metabolites of the cardioprotective drug dexrazoxane do not protect myocytes from doxorubicin-induced cytotoxicity. Mol Pharmacol. 2003 Sep;64(3):670-8. doi: 10.1124/mol.64.3.670.

Reference Type BACKGROUND
PMID: 12920203 (View on PubMed)

Wiseman LR, Spencer CM. Dexrazoxane. A review of its use as a cardioprotective agent in patients receiving anthracycline-based chemotherapy. Drugs. 1998 Sep;56(3):385-403. doi: 10.2165/00003495-199856030-00009.

Reference Type BACKGROUND
PMID: 9777314 (View on PubMed)

Brier ME, Gaylor SK, McGovren JP, Glue P, Fang A, Aronoff GR. Pharmacokinetics of dexrazoxane in subjects with impaired kidney function. J Clin Pharmacol. 2011 May;51(5):731-8. doi: 10.1177/0091270010369675. Epub 2010 May 19.

Reference Type BACKGROUND
PMID: 20484616 (View on PubMed)

Lipshultz SE, Rifai N, Dalton VM, Levy DE, Silverman LB, Lipsitz SR, Colan SD, Asselin BL, Barr RD, Clavell LA, Hurwitz CA, Moghrabi A, Samson Y, Schorin MA, Gelber RD, Sallan SE. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004 Jul 8;351(2):145-53. doi: 10.1056/NEJMoa035153.

Reference Type BACKGROUND
PMID: 15247354 (View on PubMed)

Elbl L, Hrstkova H, Tomaskova I, Michalek J. Late anthracycline cardiotoxicity protection by dexrazoxane (ICRF-187) in pediatric patients: echocardiographic follow-up. Support Care Cancer. 2006 Feb;14(2):128-36. doi: 10.1007/s00520-005-0858-8. Epub 2005 Jul 21.

Reference Type BACKGROUND
PMID: 16034614 (View on PubMed)

Sanchez-Medina J, Gonzalez-Ramella O, Gallegos-Castorena S. The effect of dexrazoxane for clinical and subclinical cardiotoxicity in children with acute myeloid leukemia. J Pediatr Hematol Oncol. 2010 May;32(4):294-7. doi: 10.1097/MPH.0b013e3181d321b3.

Reference Type BACKGROUND
PMID: 20404753 (View on PubMed)

Choi HS, Park ES, Kang HJ, Shin HY, Noh CI, Yun YS, Ahn HS, Choi JY. Dexrazoxane for preventing anthracycline cardiotoxicity in children with solid tumors. J Korean Med Sci. 2010 Sep;25(9):1336-42. doi: 10.3346/jkms.2010.25.9.1336. Epub 2010 Aug 12.

Reference Type BACKGROUND
PMID: 20808678 (View on PubMed)

Tebbi CK, London WB, Friedman D, Villaluna D, De Alarcon PA, Constine LS, Mendenhall NP, Sposto R, Chauvenet A, Schwartz CL. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin's disease. J Clin Oncol. 2007 Feb 10;25(5):493-500. doi: 10.1200/JCO.2005.02.3879.

Reference Type BACKGROUND
PMID: 17290056 (View on PubMed)

Barry EV, Vrooman LM, Dahlberg SE, Neuberg DS, Asselin BL, Athale UH, Clavell LA, Larsen EC, Moghrabi A, Samson Y, Schorin MA, Cohen HJ, Lipshultz SE, Sallan SE, Silverman LB. Absence of secondary malignant neoplasms in children with high-risk acute lymphoblastic leukemia treated with dexrazoxane. J Clin Oncol. 2008 Mar 1;26(7):1106-11. doi: 10.1200/JCO.2007.12.2481.

Reference Type BACKGROUND
PMID: 18309945 (View on PubMed)

Lipshultz SE, Scully RE, Lipsitz SR, Sallan SE, Silverman LB, Miller TL, Barry EV, Asselin BL, Athale U, Clavell LA, Larsen E, Moghrabi A, Samson Y, Michon B, Schorin MA, Cohen HJ, Neuberg DS, Orav EJ, Colan SD. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol. 2010 Oct;11(10):950-61. doi: 10.1016/S1470-2045(10)70204-7. Epub 2010 Sep 16.

Reference Type BACKGROUND
PMID: 20850381 (View on PubMed)

Vrooman LM, Neuberg DS, Stevenson KE, Asselin BL, Athale UH, Clavell L, Cole PD, Kelly KM, Larsen EC, Laverdiere C, Michon B, Schorin M, Schwartz CL, Cohen HJ, Lipshultz SE, Silverman LB, Sallan SE. The low incidence of secondary acute myelogenous leukaemia in children and adolescents treated with dexrazoxane for acute lymphoblastic leukaemia: a report from the Dana-Farber Cancer Institute ALL Consortium. Eur J Cancer. 2011 Jun;47(9):1373-9. doi: 10.1016/j.ejca.2011.03.022. Epub 2011 Apr 20.

Reference Type BACKGROUND
PMID: 21514146 (View on PubMed)

Holcenberg JS, Tutsch KD, Earhart RH, Ungerleider RS, Kamen BA, Pratt CB, Gribble TJ, Glaubiger DL. Phase I study of ICRF-187 in pediatric cancer patients and comparison of its pharmacokinetics in children and adults. Cancer Treat Rep. 1986 Jun;70(6):703-9.

Reference Type BACKGROUND
PMID: 3089595 (View on PubMed)

Reichardt P, Tabone MD, Mora J, Morland B, Jones RL. Risk-benefit of dexrazoxane for preventing anthracycline-related cardiotoxicity: re-evaluating the European labeling. Future Oncol. 2018 Oct;14(25):2663-2676. doi: 10.2217/fon-2018-0210. Epub 2018 May 11.

Reference Type BACKGROUND
PMID: 29747541 (View on PubMed)

Cvetkovic RS, Scott LJ. Dexrazoxane : a review of its use for cardioprotection during anthracycline chemotherapy. Drugs. 2005;65(7):1005-24. doi: 10.2165/00003495-200565070-00008.

Reference Type BACKGROUND
PMID: 15892593 (View on PubMed)

Herman, E.H., Hasinoff, B.B., Steiner, R., Lipshultz, S.E. 2014. A review of the preclinical development of dexrazoxane. Prog Ped Card. 36: 33-38

Reference Type BACKGROUND

Hoffman TM, Wernovsky G, Atz AM, Kulik TJ, Nelson DP, Chang AC, Bailey JM, Akbary A, Kocsis JF, Kaczmarek R, Spray TL, Wessel DL. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation. 2003 Feb 25;107(7):996-1002. doi: 10.1161/01.cir.0000051365.81920.28.

Reference Type BACKGROUND
PMID: 12600913 (View on PubMed)

Sznycer-Taub N, Mackie S, Peng YW, Donohue J, Yu S, Aiyagari R, Charpie J. Myocardial Oxidative Stress in Infants Undergoing Cardiac Surgery. Pediatr Cardiol. 2016 Apr;37(4):746-50. doi: 10.1007/s00246-016-1345-3. Epub 2016 Feb 3.

Reference Type BACKGROUND
PMID: 26843460 (View on PubMed)

Butts RJ, Scheurer MA, Zyblewski SC, Wahlquist AE, Nietert PJ, Bradley SM, Atz AM, Graham EM. A composite outcome for neonatal cardiac surgery research. J Thorac Cardiovasc Surg. 2014 Jan;147(1):428-33. doi: 10.1016/j.jtcvs.2013.03.013. Epub 2013 Apr 12.

Reference Type BACKGROUND
PMID: 23587468 (View on PubMed)

Su XW, Undar A. Brain protection during pediatric cardiopulmonary bypass. Artif Organs. 2010 Apr;34(4):E91-102. doi: 10.1111/j.1525-1594.2009.00963.x.

Reference Type BACKGROUND
PMID: 20420605 (View on PubMed)

Vidrio H, Carrasco OF, Rodriguez R. Antivasoconstrictor effect of the neuroprotective agent dexrazoxane in rat aorta. Life Sci. 2006 Dec 14;80(2):98-104. doi: 10.1016/j.lfs.2006.08.025. Epub 2006 Aug 25.

Reference Type BACKGROUND
PMID: 17007888 (View on PubMed)

Florio P, Abella RF, de la Torre T, Giamberti A, Luisi S, Butera G, Cazzaniga A, Frigiola A, Petraglia F, Gazzolo D. Perioperative activin A concentrations as a predictive marker of neurologic abnormalities in children after open heart surgery. Clin Chem. 2007 May;53(5):982-5. doi: 10.1373/clinchem.2006.077149. Epub 2007 Mar 15.

Reference Type BACKGROUND
PMID: 17363421 (View on PubMed)

Fiser DH. Assessing the outcome of pediatric intensive care. J Pediatr. 1992 Jul;121(1):68-74. doi: 10.1016/s0022-3476(05)82544-2.

Reference Type BACKGROUND
PMID: 1625096 (View on PubMed)

Mou SS, Giroir BP, Molitor-Kirsch EA, Leonard SR, Nikaidoh H, Nizzi F, Town DA, Roy LC, Scott W, Stromberg D. Fresh whole blood versus reconstituted blood for pump priming in heart surgery in infants. N Engl J Med. 2004 Oct 14;351(16):1635-44. doi: 10.1056/NEJMoa041065.

Reference Type BACKGROUND
PMID: 15483282 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

2020-02-0075

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Nesiritide Use Following Cardiac Surgery in Infants
NCT00281671 TERMINATED PHASE1/PHASE2