Strategies for Anticoagulation During Venovenous ECMO

NCT ID: NCT04997265

Last Updated: 2025-06-18

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

26 participants

Study Classification

INTERVENTIONAL

Study Start Date

2022-05-12

Study Completion Date

2024-01-10

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Moderate intensity titrated dose anticoagulation has been used in patients receiving extracorporeal membrane oxygenation (ECMO) to prevent thromboembolism and thrombotic mechanical complications. As technology has improved, however, the incidence of thromboembolic events has decreased, leading to re-evaluation of the risks of anticoagulation, particularly during venovenous (V-V) ECMO. Recent data suggest that bleeding complications during V-V ECMO may be more strongly associated with mortality than thromboembolic complications, and case series have suggested that V-V ECMO can be safely performed without moderate or high intensity anticoagulation. At present, there is significant variability between institutions in the approach to anticoagulation during V-V ECMO. A definitive randomized controlled trial is needed to compare the effects of a low intensity fixed dose anticoagulation (low intensity) versus moderate intensity titrated dose anticoagulation (moderate intensity) on clinical outcomes during V-V ECMO. Before such a trial can be conducted, however, additional data are needed to inform the feasibility of the future trial.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Since the inception of Extracorporeal Membrane Oxygenation (ECMO), moderate intensity titrated dose anticoagulation has been used to prevent clinically harmful thromboembolism and thrombotic mechanical complications. The impact of thromboembolic events on clinical outcomes during venovenous (V-V) extracorporeal membrane oxygenation (ECMO), however, is unclear, and complications related to bleeding are common and associated with increased morbidity and mortality. These findings have led many experts to suggest that anticoagulation strategies during V-V ECMO should be re-evaluated.

Critical illness, in general, is associated with both coagulopathy and impaired hemostasis. These problems are compounded during ECMO by the artificial interface between blood and the non-biologic surface of the circuit components, which leads to activation of the coagulation system, consumptive thrombocytopenia, fibrinolysis, and thrombin generation. The sheer stress on blood components during ECMO also lead to destruction of high-molecular-weight von Willebrand multimers, interrupting primary hemostasis.

Both bleeding and thromboembolism are common complications during ECMO. Bleeding events have been associated with poor clinical outcomes, likely mediated by an increased incidence of intracranial hemorrhage during ECMO. During intra-operative cardiopulmonary bypass and venoarterial (V-A) ECMO, ischemic strokes are a common and potentially deadly complication. During V-V ECMO, however, the majority of thromboembolic events are cannula-associated DVT and circuit thromboses requiring exchange, which are of unclear clinical significance.

Various anticoagulation strategies have been proposed to balance the risks of bleeding and thromboembolism during V-V ECMO, including high intensity anticoagulation, moderate intensity anticoagulation, and low intensity anticoagulation (the equivalent of DVT prophylaxis). Observational studies have suggested that, compared to moderate intensity anticoagulation, low intensity anticoagulation reduces transfusion requirements without affecting the incidence of thrombosis, hemorrhage, or death. In one case series of 60 patients who were treated with only low-intensity subcutaneous heparin during V-V ECMO, rates of transfusions were lower than historical controls without any effect on the rate of thrombotic events. Similarly, a recent systematic review suggested that the rates of thromboembolism and circuit thrombosis among patients managed with a moderate intensity anticoagulation strategy during V-V ECMO were comparable to the rates reported among patients managed with a less intense anticoagulation strategy.

To date, there are no randomized controlled trials comparing low intensity to moderate intensity anticoagulation during V-V ECMO. Guidelines from the Extracorporeal Life Support Organization (ELSO), the pre-eminent group for ECMO education and research, provide little guidance for the selection of anticoagulation strategy, and anticoagulation practices are highly variable across institutions. A large, multicenter, randomized trial is needed to determine the ideal strategy to anticoagulation during V-V ECMO. Before such a trial can be conducted, however, additional data are needed on the feasibility of randomizing patients to a specific anticoagulation strategy and study measurements.

To facilitate a large, multicenter randomized controlled trial comparing low intensity anticoagulation to moderate intensity anticoagulation during V-V ECMO, a pilot trial is needed to establish feasibility and the performance of the primary outcome measures.

Primary aim of the study: To demonstrate feasibility of a future large, multi-center randomized controlled trial comparing low intensity to moderate intensity anticoagulation among adults receiving V-V ECMO by demonstrating the ability to recruit and randomize participants, adhere to assigned anticoagulation strategy, and demonstrate adequate separation between groups in therapy delivered and intensity of anticoagulation achieved with the assigned anticoagulation strategies.

Secondary aim of the study: To define and estimate the frequency of the primary efficacy, primary safety, and secondary outcomes of a future large, multi-center randomized controlled trial comparing low intensity vs moderate intensity anticoagulation among adults receiving V-V ECMO.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Acute Hypoxemic Respiratory Failure Anticoagulant-induced Bleeding Thromboembolism

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Single center, open-label, parallel-group, randomized pilot trial
Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Low Intensity Anticoagulation

For patients assigned to the low intensity anticoagulation strategy, clinical teams will be instructed to initiate low intensity anticoagulation at doses and frequencies commonly used for deep vein thrombosis (DVT) prophylaxis. The choice of anticoagulant, dose, and frequency of administration will be deferred to treating clinicians.

Group Type EXPERIMENTAL

Low intensity anticoagulation

Intervention Type OTHER

Participants assigned to the low intensity anticoagulation strategy will receive anticoagulation at doses used for DVT prophylaxis in critically ill patients. The choice of agent (e.g. heparin or enoxaparin) and specific dosing will be at the discretion of the treating clinicians and will be prospectively recorded.

Moderate Intensity Anticoagulation

For patients assigned to the moderate intensity anticoagulation group, clinical teams will be instructed to initiate a continuous infusion of moderate intensity anticoagulation targeting either a partial thromboplastin time (PTT) of 40-60 seconds or an Anti-Xa level of 0.2 to 0.3 IU/mL. The choice of anticoagulant and approach to dosing will be deferred to treating clinicians.

Group Type ACTIVE_COMPARATOR

Moderate Intensity Anticoagulation

Intervention Type OTHER

Patients assigned to the moderate intensity anticoagulation strategy will receive anticoagulation targeting a PTT goal of 40-60 seconds or anti-Xa level of 0.2 to 0.3 IU/mL. Choice of anticoagulant and monitoring strategy (PTT or anti-Xa level) will be at the discretion of the treating clinicians and will be prospectively recorded. Anticoagulant drips will be titrated according to institutional protocols. For patients who survive to decannulation, the infusion will be stopped one hour prior to decannulation.

This approach to anticoagulation reflects the current approach for patients receiving V-V ECMO at Vanderbilt University Medical Center and is similar to protocols widely adopted for patients receiving V-V ECMO at other centers.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Low intensity anticoagulation

Participants assigned to the low intensity anticoagulation strategy will receive anticoagulation at doses used for DVT prophylaxis in critically ill patients. The choice of agent (e.g. heparin or enoxaparin) and specific dosing will be at the discretion of the treating clinicians and will be prospectively recorded.

Intervention Type OTHER

Moderate Intensity Anticoagulation

Patients assigned to the moderate intensity anticoagulation strategy will receive anticoagulation targeting a PTT goal of 40-60 seconds or anti-Xa level of 0.2 to 0.3 IU/mL. Choice of anticoagulant and monitoring strategy (PTT or anti-Xa level) will be at the discretion of the treating clinicians and will be prospectively recorded. Anticoagulant drips will be titrated according to institutional protocols. For patients who survive to decannulation, the infusion will be stopped one hour prior to decannulation.

This approach to anticoagulation reflects the current approach for patients receiving V-V ECMO at Vanderbilt University Medical Center and is similar to protocols widely adopted for patients receiving V-V ECMO at other centers.

Intervention Type OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Patient receiving V-V ECMO
2. Patient is located in a participating unit of the Vanderbilt University Medical Center (VUMC) adult hospital.

Exclusion Criteria

1. Patient is pregnant
2. Patient is a prisoner
3. Patient is \< 18 years old
4. Patient underwent ECMO cannulation greater than 24 hours prior to screening
5. Presence of an indication for systemic anticoagulation:

1. Ongoing receipt of systemic anticoagulation
2. Planned administration of anticoagulation for an indication other than ECMO
3. Presence of or plan to insert an arterial ECMO cannula
6. Presence of a contraindication to anticoagulation:

1. Active bleeding determined by treating clinicians to make anticoagulation unsafe
2. Major surgery or trauma less than 72 hours prior to randomization
3. Known history of a bleeding diathesis
4. Ongoing severe thrombocytopenia (platelet count \< 30,000)
5. History of heparin-induced thrombocytopenia (HIT)
6. Heparin allergy
7. Positive SARS-CoV-2 test within prior 21 days or high clinical suspicion for COVID-19
8. The treating clinician determines that the patient's risks of thromboembolism or bleeding necessitate a specific approach to anticoagulation management during V-V ECMO
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Vanderbilt University Medical Center

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Whitney Gannon

Acute Care Nurse Practitioner

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Jonathan D Casey, MD, MSc

Role: STUDY_DIRECTOR

Vanderbilt University Medical Center

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Vanderbilt University Medical Center

Nashville, Tennessee, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Schulman S, Kearon C; Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost. 2005 Apr;3(4):692-4. doi: 10.1111/j.1538-7836.2005.01204.x.

Reference Type BACKGROUND
PMID: 15842354 (View on PubMed)

Aubron C, DePuydt J, Belon F, Bailey M, Schmidt M, Sheldrake J, Murphy D, Scheinkestel C, Cooper DJ, Capellier G, Pellegrino V, Pilcher D, McQuilten Z. Predictive factors of bleeding events in adults undergoing extracorporeal membrane oxygenation. Ann Intensive Care. 2016 Dec;6(1):97. doi: 10.1186/s13613-016-0196-7. Epub 2016 Oct 6.

Reference Type BACKGROUND
PMID: 27714705 (View on PubMed)

Aubron C, Cheng AC, Pilcher D, Leong T, Magrin G, Cooper DJ, Scheinkestel C, Pellegrino V. Factors associated with outcomes of patients on extracorporeal membrane oxygenation support: a 5-year cohort study. Crit Care. 2013 Apr 18;17(2):R73. doi: 10.1186/cc12681.

Reference Type BACKGROUND
PMID: 23594433 (View on PubMed)

Zangrillo A, Landoni G, Biondi-Zoccai G, Greco M, Greco T, Frati G, Patroniti N, Antonelli M, Pesenti A, Pappalardo F. A meta-analysis of complications and mortality of extracorporeal membrane oxygenation. Crit Care Resusc. 2013 Sep;15(3):172-8.

Reference Type BACKGROUND
PMID: 23944202 (View on PubMed)

Combes A, Leprince P, Luyt CE, Bonnet N, Trouillet JL, Leger P, Pavie A, Chastre J. Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit Care Med. 2008 May;36(5):1404-11. doi: 10.1097/CCM.0b013e31816f7cf7.

Reference Type BACKGROUND
PMID: 18434909 (View on PubMed)

Munshi L, Walkey A, Goligher E, Pham T, Uleryk EM, Fan E. Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis. Lancet Respir Med. 2019 Feb;7(2):163-172. doi: 10.1016/S2213-2600(18)30452-1. Epub 2019 Jan 11.

Reference Type BACKGROUND
PMID: 30642776 (View on PubMed)

Murphy DA, Hockings LE, Andrews RK, Aubron C, Gardiner EE, Pellegrino VA, Davis AK. Extracorporeal membrane oxygenation-hemostatic complications. Transfus Med Rev. 2015 Apr;29(2):90-101. doi: 10.1016/j.tmrv.2014.12.001. Epub 2014 Dec 18.

Reference Type BACKGROUND
PMID: 25595476 (View on PubMed)

Chlebowski MM, Baltagi S, Carlson M, Levy JH, Spinella PC. Clinical controversies in anticoagulation monitoring and antithrombin supplementation for ECMO. Crit Care. 2020 Jan 20;24(1):19. doi: 10.1186/s13054-020-2726-9.

Reference Type BACKGROUND
PMID: 31959232 (View on PubMed)

Saini A, Spinella PC. Management of anticoagulation and hemostasis for pediatric extracorporeal membrane oxygenation. Clin Lab Med. 2014 Sep;34(3):655-73. doi: 10.1016/j.cll.2014.06.014. Epub 2014 Jul 24.

Reference Type BACKGROUND
PMID: 25168949 (View on PubMed)

Doyle AJ, Hunt BJ. Current Understanding of How Extracorporeal Membrane Oxygenators Activate Haemostasis and Other Blood Components. Front Med (Lausanne). 2018 Dec 12;5:352. doi: 10.3389/fmed.2018.00352. eCollection 2018.

Reference Type BACKGROUND
PMID: 30619862 (View on PubMed)

Tauber H, Ott H, Streif W, Weigel G, Loacker L, Fritz J, Heinz A, Velik-Salchner C. Extracorporeal membrane oxygenation induces short-term loss of high-molecular-weight von Willebrand factor multimers. Anesth Analg. 2015 Apr;120(4):730-6. doi: 10.1213/ANE.0000000000000554.

Reference Type BACKGROUND
PMID: 25565317 (View on PubMed)

Kasirajan V, Smedira NG, McCarthy JF, Casselman F, Boparai N, McCarthy PM. Risk factors for intracranial hemorrhage in adults on extracorporeal membrane oxygenation. Eur J Cardiothorac Surg. 1999 Apr;15(4):508-14. doi: 10.1016/s1010-7940(99)00061-5.

Reference Type BACKGROUND
PMID: 10371130 (View on PubMed)

Menaker J, Tabatabai A, Rector R, Dolly K, Kufera J, Lee E, Kon Z, Sanchez P, Pham S, Herr DL, Mazzeffi M, Rabinowitz RP, O'Connor JV, Stein DM, Scalea TM. Incidence of Cannula-Associated Deep Vein Thrombosis After Veno-Venous Extracorporeal Membrane Oxygenation. ASAIO J. 2017 Sep/Oct;63(5):588-591. doi: 10.1097/MAT.0000000000000539.

Reference Type BACKGROUND
PMID: 28857905 (View on PubMed)

Cooper E, Burns J, Retter A, Salt G, Camporota L, Meadows CI, Langrish CC, Wyncoll D, Glover G, Ioannou N, Daly K, Barrett NA. Prevalence of Venous Thrombosis Following Venovenous Extracorporeal Membrane Oxygenation in Patients With Severe Respiratory Failure. Crit Care Med. 2015 Dec;43(12):e581-4. doi: 10.1097/CCM.0000000000001277.

Reference Type BACKGROUND
PMID: 26308437 (View on PubMed)

Esper SA, Welsby IJ, Subramaniam K, John Wallisch W, Levy JH, Waters JH, Triulzi DJ, Hayanga JWA, Schears GJ. Adult extracorporeal membrane oxygenation: an international survey of transfusion and anticoagulation techniques. Vox Sang. 2017 Jul;112(5):443-452. doi: 10.1111/vox.12514. Epub 2017 May 3.

Reference Type BACKGROUND
PMID: 28466601 (View on PubMed)

Krueger K, Schmutz A, Zieger B, Kalbhenn J. Venovenous Extracorporeal Membrane Oxygenation With Prophylactic Subcutaneous Anticoagulation Only: An Observational Study in More Than 60 Patients. Artif Organs. 2017 Feb;41(2):186-192. doi: 10.1111/aor.12737. Epub 2016 Jun 3.

Reference Type BACKGROUND
PMID: 27256966 (View on PubMed)

Carter KT, Kutcher ME, Shake JG, Panos AL, Cochran RP, Creswell LL, Copeland H. Heparin-Sparing Anticoagulation Strategies Are Viable Options for Patients on Veno-Venous ECMO. J Surg Res. 2019 Nov;243:399-409. doi: 10.1016/j.jss.2019.05.050. Epub 2019 Jul 2.

Reference Type BACKGROUND
PMID: 31277018 (View on PubMed)

Wood KL, Ayers B, Gosev I, Kumar N, Melvin AL, Barrus B, Prasad S. Venoarterial-Extracorporeal Membrane Oxygenation Without Routine Systemic Anticoagulation Decreases Adverse Events. Ann Thorac Surg. 2020 May;109(5):1458-1466. doi: 10.1016/j.athoracsur.2019.08.040. Epub 2019 Sep 26.

Reference Type BACKGROUND
PMID: 31563493 (View on PubMed)

Olson SR, Murphree CR, Zonies D, Meyer AD, Mccarty OJT, Deloughery TG, Shatzel JJ. Thrombosis and Bleeding in Extracorporeal Membrane Oxygenation (ECMO) Without Anticoagulation: A Systematic Review. ASAIO J. 2021 Mar 1;67(3):290-296. doi: 10.1097/MAT.0000000000001230.

Reference Type BACKGROUND
PMID: 33627603 (View on PubMed)

ELSO. ELSO Anticoagulation Guidelines. 2014.

Reference Type BACKGROUND

Bembea MM, Annich G, Rycus P, Oldenburg G, Berkowitz I, Pronovost P. Variability in anticoagulation management of patients on extracorporeal membrane oxygenation: an international survey. Pediatr Crit Care Med. 2013 Feb;14(2):e77-84. doi: 10.1097/PCC.0b013e31827127e4.

Reference Type BACKGROUND
PMID: 23287906 (View on PubMed)

Gannon WD, Pratt EH, Vogelsong MA, Adkisson WH, Bacchetta M, Bloom SL, Ford DJ, Guenthart BA, Landsperger JS, Qian ET, Rackley CR, Rice TW, Fielding-Singh V, Stokes JW, Stollings JL, Semler MW, Casey JD; Pragmatic Critical Care Research Group. Low-Intensity vs Moderate-Intensity Anticoagulation for Venovenous Extracorporeal Membrane Oxygenation: The Strategies for Anticoagulation During Venovenous Extracorporeal Membrane Oxygenation Pilot Trial. Chest. 2025 Sep;168(3):639-649. doi: 10.1016/j.chest.2025.02.032. Epub 2025 Mar 11.

Reference Type DERIVED
PMID: 40081660 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol and Statistical Analysis Plan

View Document

Document Type: Informed Consent Form

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

202210

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.