DETECT: Target Volume for Rectal Endoluminal Radiation Boosting
NCT ID: NCT04927897
Last Updated: 2025-07-28
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
50 participants
OBSERVATIONAL
2022-08-16
2027-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Dynamic Contrast Enhanced Ultrasound for Predict and Assess Rectal Cancer Response After Neo-adjuvant Chemoradiation - RECT
NCT03068403
Rectal Study: Value of Repeated FDG-PET-CT Scans in Rectal Cancer
NCT00576563
MRI Imaging or CT Abdomen as Standard Work-up Before Treatment Planning for Rectal Cancer?
NCT03463616
Organ Preservation in Rectal Cancer by Dose Escalated MR Guided Adaptive Radiotherapy
NCT07337876
Diagnostic Value of Novel MR Imaging Techniques for the Primary Staging and Restaging of Rectal Cancer
NCT01721785
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
In addition to standard workup and treatment (e.g. a flexible endoscopy and an MRI scan at 6-8 weeks post-neoadjuvant therapy), patients will undergo pre-operatively, after induction of general anaesthesia, an endorectal ultrasound and rigid rectoscopy as study procedures if these procedures are not already part of standard workup. Furthermore, the pathological specimens of some patients will be scanned using MR imaging during certain parts of the pathological process.
Objectives include determining the maximum distance of microscopic tumor spread per patient in all directions, creating a tissue deformation model to account for changes due to e.g. fixation and pathological processing, using this tissue deformation model to translate the microscopic tumor spread back to the in vivo situation (e.g. back to in vivo MRI scans, 3D endo-ultrasounds), and evaluating/determining risk factors for the presence and/or extent of microscopic tumor spread.
This data will be used for target volume definition in rectal endoluminal radiation boosting.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Observational
In addition to standard workup and treatment, patients will undergo pre-operatively, after induction of general anaesthesia, an endorectal ultrasound and rigid rectoscopy as study procedures if these are not part of standard workup yet.
Ultrasound
3D endorectal ultrasound.
Rectoscopy
Rigid rectoscopy.
Scan, e.g. CT (resection specimen)
For some patients, images of the resection specimen (note: NOT of the patients) during the pathological process will be acquired.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Ultrasound
3D endorectal ultrasound.
Rectoscopy
Rigid rectoscopy.
Scan, e.g. CT (resection specimen)
For some patients, images of the resection specimen (note: NOT of the patients) during the pathological process will be acquired.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* ycT1-3N0(\*) residual(\*\*) histology confirmed rectal adenocarcinoma after neoadjuvant radiotherapy or long-course chemoradiotherapy for which patients will undergo TME surgery.
* Minimal interval between end of neoadjuvant chemoradiotherapy or radiotherapy: 6 weeks.
(\*)= as determined by clinical assessment (digital rectal examination, endoscopy with or without biopsy) and/or MRI. Biopsy/histology around the time of diagnosis is adequate; no biopsy/histology is needed after neoadjuvant therapy.
(\*\*)= including tumor regrowths/local recurrence after an initial clinical complete response and a "watch and wait" approach. These patients will also be included after the local recurrence has been determined using endoscopy and/or MRI.
Exclusion Criteria
* \<18 years of age or incapable of giving informed consent.
* Patient has not been treated with neoadjuvant radiotherapy or long-course chemoradiotherapy.
* Patient will not undergo TME surgery for a ycT1-3N0 residual histology confirmed rectal adenocarcinoma.
* Interval between end of neoadjuvant therapy and surgery is \<6 weeks.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Maastricht University Medical Center
OTHER
Catharina Ziekenhuis Eindhoven
OTHER
Maastricht Radiation Oncology
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Maaike Berbée, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
Maastro
Evert Van Limbergen, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
Maastro
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Maastro
Maastricht, Limburg, Netherlands
Maastricht University Medical Center
Maastricht, Limburg, Netherlands
Catharina Hospital
Eindhoven, North Brabant, Netherlands
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Maaike Berbée, MD, PhD
Role: primary
Evert Van Limbergen, MD, PhD
Role: backup
Maaike Berbée, MD, PhD
Role: primary
Jarno Melenhorst, MD, PhD
Role: backup
An-Sofie Verrijssen, MD
Role: primary
Pim Burger, MD, PhD
Role: backup
References
Explore related publications, articles, or registry entries linked to this study.
van Gijn W, Marijnen CA, Nagtegaal ID, Kranenbarg EM, Putter H, Wiggers T, Rutten HJ, Pahlman L, Glimelius B, van de Velde CJ; Dutch Colorectal Cancer Group. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol. 2011 Jun;12(6):575-82. doi: 10.1016/S1470-2045(11)70097-3. Epub 2011 May 17.
Sebag-Montefiore D, Stephens RJ, Steele R, Monson J, Grieve R, Khanna S, Quirke P, Couture J, de Metz C, Myint AS, Bessell E, Griffiths G, Thompson LC, Parmar M. Preoperative radiotherapy versus selective postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): a multicentre, randomised trial. Lancet. 2009 Mar 7;373(9666):811-20. doi: 10.1016/S0140-6736(09)60484-0.
Peeters KC, Marijnen CA, Nagtegaal ID, Kranenbarg EK, Putter H, Wiggers T, Rutten H, Pahlman L, Glimelius B, Leer JW, van de Velde CJ; Dutch Colorectal Cancer Group. The TME trial after a median follow-up of 6 years: increased local control but no survival benefit in irradiated patients with resectable rectal carcinoma. Ann Surg. 2007 Nov;246(5):693-701. doi: 10.1097/01.sla.0000257358.56863.ce.
Maas M, Beets-Tan RG, Lambregts DM, Lammering G, Nelemans PJ, Engelen SM, van Dam RM, Jansen RL, Sosef M, Leijtens JW, Hulsewe KW, Buijsen J, Beets GL. Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol. 2011 Dec 10;29(35):4633-40. doi: 10.1200/JCO.2011.37.7176. Epub 2011 Nov 7.
Maas M, Nelemans PJ, Valentini V, Das P, Rodel C, Kuo LJ, Calvo FA, Garcia-Aguilar J, Glynne-Jones R, Haustermans K, Mohiuddin M, Pucciarelli S, Small W Jr, Suarez J, Theodoropoulos G, Biondo S, Beets-Tan RG, Beets GL. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 2010 Sep;11(9):835-44. doi: 10.1016/S1470-2045(10)70172-8. Epub 2010 Aug 6.
Rijkmans EC, Cats A, Nout RA, van den Bongard DHJG, Ketelaars M, Buijsen J, Rozema T, Franssen JH, Velema LA, van Triest B, Marijnen CAM. Endorectal Brachytherapy Boost After External Beam Radiation Therapy in Elderly or Medically Inoperable Patients With Rectal Cancer: Primary Outcomes of the Phase 1 HERBERT Study. Int J Radiat Oncol Biol Phys. 2017 Jul 15;98(4):908-917. doi: 10.1016/j.ijrobp.2017.01.033. Epub 2017 Jan 20.
Sun Myint A, Smith FM, Gollins S, Wong H, Rao C, Whitmarsh K, Sripadam R, Rooney P, Hershman M, Pritchard DM. Dose Escalation Using Contact X-ray Brachytherapy After External Beam Radiotherapy as Nonsurgical Treatment Option for Rectal Cancer: Outcomes From a Single-Center Experience. Int J Radiat Oncol Biol Phys. 2018 Mar 1;100(3):565-573. doi: 10.1016/j.ijrobp.2017.10.022. Epub 2017 Oct 20.
Appelt AL, Ploen J, Harling H, Jensen FS, Jensen LH, Jorgensen JC, Lindebjerg J, Rafaelsen SR, Jakobsen A. High-dose chemoradiotherapy and watchful waiting for distal rectal cancer: a prospective observational study. Lancet Oncol. 2015 Aug;16(8):919-27. doi: 10.1016/S1470-2045(15)00120-5. Epub 2015 Jul 5.
Garant A, Magnan S, Devic S, Martin AG, Boutros M, Vasilevsky CA, Ferland S, Bujold A, DesGroseilliers S, Sebajang H, Richard C, Vuong T. Image Guided Adaptive Endorectal Brachytherapy in the Nonoperative Management of Patients With Rectal Cancer. Int J Radiat Oncol Biol Phys. 2019 Dec 1;105(5):1005-1011. doi: 10.1016/j.ijrobp.2019.08.042. Epub 2019 Aug 30.
Verrijssen AS, Opbroek T, Bellezzo M, Fonseca GP, Verhaegen F, Gerard JP, Sun Myint A, Van Limbergen EJ, Berbee M. A systematic review comparing radiation toxicity after various endorectal techniques. Brachytherapy. 2019 Jan-Feb;18(1):71-86.e5. doi: 10.1016/j.brachy.2018.10.001. Epub 2018 Nov 3.
Smith FM, Rao C, Oliva Perez R, Bujko K, Athanasiou T, Habr-Gama A, Faiz O. Avoiding radical surgery improves early survival in elderly patients with rectal cancer, demonstrating complete clinical response after neoadjuvant therapy: results of a decision-analytic model. Dis Colon Rectum. 2015 Feb;58(2):159-71. doi: 10.1097/DCR.0000000000000281.
Verrijssen AS, Guillem J, Perez R, Bujko K, Guedj N, Habr-Gama A, Houben R, Goudkade D, Melenhorst J, Buijsen J, Vanneste B, Grabsch HI, Bellezzo M, Paiva Fonseca G, Verhaegen F, Berbee M, Van Limbergen EJ. Microscopic intramural extension of rectal cancer after neoadjuvant chemoradiation: A meta-analysis based on individual patient data. Radiother Oncol. 2020 Mar;144:37-45. doi: 10.1016/j.radonc.2019.10.003. Epub 2019 Nov 9.
Maas M, Lambregts DM, Nelemans PJ, Heijnen LA, Martens MH, Leijtens JW, Sosef M, Hulsewe KW, Hoff C, Breukink SO, Stassen L, Beets-Tan RG, Beets GL. Assessment of Clinical Complete Response After Chemoradiation for Rectal Cancer with Digital Rectal Examination, Endoscopy, and MRI: Selection for Organ-Saving Treatment. Ann Surg Oncol. 2015 Nov;22(12):3873-80. doi: 10.1245/s10434-015-4687-9. Epub 2015 Jul 22.
Nuernberg D, Saftoiu A, Barreiros AP, Burmester E, Ivan ET, Clevert DA, Dietrich CF, Gilja OH, Lorentzen T, Maconi G, Mihmanli I, Nolsoe CP, Pfeffer F, Rafaelsen SR, Sparchez Z, Vilmann P, Waage JER. EFSUMB Recommendations for Gastrointestinal Ultrasound Part 3: Endorectal, Endoanal and Perineal Ultrasound. Ultrasound Int Open. 2019 Jan;5(1):E34-E51. doi: 10.1055/a-0825-6708. Epub 2019 Feb 5.
Martens MH, Maas M, Heijnen LA, Lambregts DM, Leijtens JW, Stassen LP, Breukink SO, Hoff C, Belgers EJ, Melenhorst J, Jansen R, Buijsen J, Hoofwijk TG, Beets-Tan RG, Beets GL. Long-term Outcome of an Organ Preservation Program After Neoadjuvant Treatment for Rectal Cancer. J Natl Cancer Inst. 2016 Aug 10;108(12):djw171. doi: 10.1093/jnci/djw171. Print 2016 Dec.
Simpson G, Hopley P, Wilson J, Day N, Haworth A, Montazeri A, Smith D, Titu L, Anderson J, Agbamu D, Walsh C. Long-term outcomes of real world 'watch and wait' data for rectal cancer after neoadjuvant chemoradiotherapy. Colorectal Dis. 2020 Nov;22(11):1568-1576. doi: 10.1111/codi.15177. Epub 2020 Jul 20.
Lam D, Kaneko Y, Scarlett A, D'Souza B, Norris R, Woods R. The Effect of Formalin Fixation on Resection Margins in Colorectal Cancer. Int J Surg Pathol. 2019 Oct;27(7):700-705. doi: 10.1177/1066896919854159. Epub 2019 Jun 14.
Kapali AS, Chandramohan K, Jayasudha AV. A Prospective Study of Distal Microscopic Spread in Rectal Cancer After Neoadjuvant Chemoradiation in Pinned and Unpinned Specimen. Indian J Surg Oncol. 2017 Dec;8(4):469-473. doi: 10.1007/s13193-017-0637-2. Epub 2017 Mar 18.
Park HS, Lee S, Haam S, Lee GD. Effect of formalin fixation and tumour size in small-sized non-small-cell lung cancer: a prospective, single-centre study. Histopathology. 2017 Sep;71(3):437-445. doi: 10.1111/his.13237. Epub 2017 Jun 16.
Goldstein NS, Soman A, Sacksner J. Disparate surgical margin lengths of colorectal resection specimens between in vivo and in vitro measurements. The effects of surgical resection and formalin fixation on organ shrinkage. Am J Clin Pathol. 1999 Mar;111(3):349-51. doi: 10.1093/ajcp/111.3.349.
Tran T, Sundaram CP, Bahler CD, Eble JN, Grignon DJ, Monn MF, Simper NB, Cheng L. Correcting the Shrinkage Effects of Formalin Fixation and Tissue Processing for Renal Tumors: toward Standardization of Pathological Reporting of Tumor Size. J Cancer. 2015 Jul 2;6(8):759-66. doi: 10.7150/jca.12094. eCollection 2015.
Dayde D, Tanaka I, Jain R, Tai MC, Taguchi A. Predictive and Prognostic Molecular Biomarkers for Response to Neoadjuvant Chemoradiation in Rectal Cancer. Int J Mol Sci. 2017 Mar 7;18(3):573. doi: 10.3390/ijms18030573.
Thies S, Langer R. Tumor regression grading of gastrointestinal carcinomas after neoadjuvant treatment. Front Oncol. 2013 Oct 7;3:262. doi: 10.3389/fonc.2013.00262.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
NL77886.068.21
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.