Selenium as a Potential Treatment for Moderately-ill, Severely-ill, and Critically-ill COVID-19 Patients.

NCT ID: NCT04869579

Last Updated: 2021-08-03

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Clinical Phase

PHASE2

Total Enrollment

100 participants

Study Classification

INTERVENTIONAL

Study Start Date

2021-08-15

Study Completion Date

2021-12-15

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Given its anti-viral, anti-oxidative, immune-enhancing, cytokine-modulating, and anticoagulant properties, the investigators hypothesize that Selenium infusion at supranutritional doses for moderately-ill, severely-ill, and critically-ill COVID-19 patients will prevent further clinical deterioration thus decreasing overall mortality and improving survival. To test this hypothesis, a prospective, single-center, phase II trial is proposed to assess the efficacy of Selenium in hospitalized adult patients with moderate, severe, and critical COVID-19 infections.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

COVID-19 is a respiratory illness that is caused by the novel SARS-CoV-2. Illness severity can widely range from mild, moderate, severe featuring pneumonia, to critical. Despite ongoing extensive research to find a cure for COVID-19, there had been no proven, efficacious, and widely-available treatment for the disease. With the death toll rising in various parts of the US and the world, it is imperative that investigators work on determining new therapeutic modalities. This study relates to inpatient and critical care for COVID-19 patients.

The role of Selenium (Se) as a trace element involved in many biological processes and reactions is well established in various organisms. Particularly, Selenium is known to have anti-viral, anti-oxidative, cytokine-modulating, immune-enhancing, and anticoagulant properties that might be beneficial in COVID-19 infections given the pathophysiological processes involved in the disease. Multiple preclinical and clinical studies have shed the light on the various effects exerted by Selenium in multiple inflammatory conditions including acute lung injury and acute respiratory distress syndrome, as well as viral infections including HIV and Influenza. The study team aims to explore the possible role of Selenium in mitigating the inflammatory processes involved in COVID-19 infections and hence its effect on disease progression and mortality.

Patients with COVID-19 who exhibit the signs and symptoms of moderate or severe infection or are critically ill will receive Selenium infusion for 14 days. The working hypothesis of this trial is that selenium treatment would decrease the death rates and increase the rate of hospital discharges among hospitalized patients.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Covid19

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

This is a randomized double-blinded, placebo-controlled Phase 2 clinical trial to assess the efficacy of Selenium in the treatment of moderately-ill, severely-ill, and critically ill COVID-19 patients. The patients will be randomized in a 1:1 ratio to receive standard of care plus a loading dose of Selenium followed by continuous infusion for a total of 14 days, or standard of care plus a Saline-based placebo.
Primary Study Purpose

TREATMENT

Blinding Strategy

DOUBLE

Participants Investigators

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Selenious Acid + Standard Of Care (SOC)

Participants who are moderately-ill, severely-ill, or critically ill will receive a Selenious Acid infusion of 2000µg on day 1 as a loading dose infusion, followed by a continuous infusion of Selenious Acid at a maintenance dose of 1000µg daily on days 2-14 together with continued Standard Of Care therapy.

Group Type EXPERIMENTAL

Selenium (as Selenious Acid)

Intervention Type DRUG

Interventional arm participants will receive Selenium as Selenious Acid infusion plus the standard of care therapy.

Standard Of Care (SOC) + Placebo

Participants will receive a Saline-based placebo infusion of 2000µg on day 1 as a loading dose, followed by continuous infusion of a Saline-based placebo at a maintenance dose of 1000µg daily on days 2-14. Standard Of Care is to be determined according to patients' clinical picture and may include Dexamethasone, Azithromycin, Ceftriaxone, Remdesivir, Convalescent Plasma.

Group Type ACTIVE_COMPARATOR

Placebo

Intervention Type OTHER

Active comparator arm participants will receive the standard of care therapy plus a Saline-based placebo.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Selenium (as Selenious Acid)

Interventional arm participants will receive Selenium as Selenious Acid infusion plus the standard of care therapy.

Intervention Type DRUG

Placebo

Active comparator arm participants will receive the standard of care therapy plus a Saline-based placebo.

Intervention Type OTHER

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Selenious Acid (AMERICAN REGENT) Saline-based Placebo

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Willing and able to provide written informed consent, or with a legal representative who can provide informed consent, or enrolled under International Conference on Harmonization (ICH) E6(R2) 4.8.15 emergency use provisions as deemed necessary by the investigator (age ≥18) prior to performing study procedure.
2. Aged ≥ 18 years.
3. Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 infection confirmed by polymerase chain reaction (PCR) test ≤ 4 days before randomization.
4. Currently hospitalized.
5. Peripheral capillary oxygen saturation (SpO2) ≤ 94% or requiring supplemental oxygen on screening.

Exclusion Criteria

1. Participation in any other clinical trial of an experimental treatment for COVID-19.
2. Evidence of multiorgan failure.
3. Mechanically ventilated for \> 5 days.
4. Alanine Aminotransferase (ALT) or aspartate aminotransferase (AST) \> 5 X upper limit of normal (ULN).
5. Creatinine clearance \< 50 mL/min.
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Pharco Pharmaceuticals

INDUSTRY

Sponsor Role collaborator

CHRISTUS Health

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Mohamed Ghoweba, MD

Internal Medicine Resident Physician

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Mohamed S Ghoweba, MD

Role: PRINCIPAL_INVESTIGATOR

CHRISTUS Health

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

CHRISTUS Good Shepherd Medical Center

Longview, Texas, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Mohamed S Ghoweba, MD

Role: CONTACT

318-219-6701

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Mohamed Ghoweba, MD

Role: primary

318-219-6701

References

Explore related publications, articles, or registry entries linked to this study.

Perona G, Schiavon R, Guidi GC, Veneri D, Minuz P. Selenium dependent glutathione peroxidase: a physiological regulatory system for platelet function. Thromb Haemost. 1990 Oct 22;64(2):312-8.

Reference Type BACKGROUND
PMID: 2270539 (View on PubMed)

Steinbrenner H, Sies H. Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta. 2009 Nov;1790(11):1478-85. doi: 10.1016/j.bbagen.2009.02.014. Epub 2009 Mar 5.

Reference Type BACKGROUND
PMID: 19268692 (View on PubMed)

Steinbrenner H, Speckmann B, Klotz LO. Selenoproteins: Antioxidant selenoenzymes and beyond. Arch Biochem Biophys. 2016 Apr 1;595:113-9. doi: 10.1016/j.abb.2015.06.024.

Reference Type BACKGROUND
PMID: 27095226 (View on PubMed)

Avery JC, Hoffmann PR. Selenium, Selenoproteins, and Immunity. Nutrients. 2018 Sep 1;10(9):1203. doi: 10.3390/nu10091203.

Reference Type BACKGROUND
PMID: 30200430 (View on PubMed)

Hassanzadeh M, Faridhosseini R, Mahini M, Faridhosseini F, Ranjbar A. Serum Levels of TNF-, IL-6, and Selenium in Patients with Acute and Chronic Coronary Artery Disease. Iran J Immunol. 2006 Sep;3(3):142-5. doi: 10.22034/iji.2006.16988.

Reference Type BACKGROUND
PMID: 18698124 (View on PubMed)

Zhou X, Wang Z, Chen J, Wang W, Song D, Li S, Yang H, Xue S, Chen C. Increased levels of IL-6, IL-1beta, and TNF-alpha in Kashin-Beck disease and rats induced by T-2 toxin and selenium deficiency. Rheumatol Int. 2014 Jul;34(7):995-1004. doi: 10.1007/s00296-013-2862-5. Epub 2013 Sep 15.

Reference Type BACKGROUND
PMID: 24037056 (View on PubMed)

Gazi MH, Gong A, Donkena KV, Young CY. Sodium selenite inhibits interleukin-6-mediated androgen receptor activation in prostate cancer cells via upregulation of c-Jun. Clin Chim Acta. 2007 May 1;380(1-2):145-50. doi: 10.1016/j.cca.2007.01.031. Epub 2007 Feb 11.

Reference Type BACKGROUND
PMID: 17346688 (View on PubMed)

Hoffmann PR, Berry MJ. The influence of selenium on immune responses. Mol Nutr Food Res. 2008 Nov;52(11):1273-80. doi: 10.1002/mnfr.200700330.

Reference Type BACKGROUND
PMID: 18384097 (View on PubMed)

Steinbrenner H, Al-Quraishy S, Dkhil MA, Wunderlich F, Sies H. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr. 2015 Jan 15;6(1):73-82. doi: 10.3945/an.114.007575. Print 2015 Jan.

Reference Type BACKGROUND
PMID: 25593145 (View on PubMed)

Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr. 2003 May;133(5 Suppl 1):1463S-7S. doi: 10.1093/jn/133.5.1463S.

Reference Type BACKGROUND
PMID: 12730444 (View on PubMed)

Beck MA. Selenium and host defence towards viruses. Proc Nutr Soc. 1999 Aug;58(3):707-11. doi: 10.1017/s0029665199000920.

Reference Type BACKGROUND
PMID: 10604206 (View on PubMed)

Beck MA. Antioxidants and viral infections: host immune response and viral pathogenicity. J Am Coll Nutr. 2001 Oct;20(5 Suppl):384S-388S; discussion 396S-397S. doi: 10.1080/07315724.2001.10719172.

Reference Type BACKGROUND
PMID: 11603647 (View on PubMed)

Schrauzer GN, Sacher J. Selenium in the maintenance and therapy of HIV-infected patients. Chem Biol Interact. 1994 Jun;91(2-3):199-205. doi: 10.1016/0009-2797(94)90040-x.

Reference Type BACKGROUND
PMID: 7514960 (View on PubMed)

Hori K, Hatfield D, Maldarelli F, Lee BJ, Clouse KA. Selenium supplementation suppresses tumor necrosis factor alpha-induced human immunodeficiency virus type 1 replication in vitro. AIDS Res Hum Retroviruses. 1997 Oct 10;13(15):1325-32. doi: 10.1089/aid.1997.13.1325.

Reference Type BACKGROUND
PMID: 9339849 (View on PubMed)

Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020 May;17(5):259-260. doi: 10.1038/s41569-020-0360-5.

Reference Type BACKGROUND
PMID: 32139904 (View on PubMed)

Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiol. 2020 Jul 1;5(7):831-840. doi: 10.1001/jamacardio.2020.1286.

Reference Type BACKGROUND
PMID: 32219363 (View on PubMed)

Wang JZ, Zhang RY, Bai J. An anti-oxidative therapy for ameliorating cardiac injuries of critically ill COVID-19-infected patients. Int J Cardiol. 2020 Aug 1;312:137-138. doi: 10.1016/j.ijcard.2020.04.009. Epub 2020 Apr 6. No abstract available.

Reference Type BACKGROUND
PMID: 32321655 (View on PubMed)

Ahrens I, Ellwanger C, Smith BK, Bassler N, Chen YC, Neudorfer I, Ludwig A, Bode C, Peter K. Selenium supplementation induces metalloproteinase-dependent L-selectin shedding from monocytes. J Leukoc Biol. 2008 Jun;83(6):1388-95. doi: 10.1189/jlb.0707497. Epub 2008 Feb 27.

Reference Type BACKGROUND
PMID: 18305178 (View on PubMed)

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24.

Reference Type BACKGROUND
PMID: 31986264 (View on PubMed)

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Dong J, Zhao J, Wang FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020 Apr;8(4):420-422. doi: 10.1016/S2213-2600(20)30076-X. Epub 2020 Feb 18. No abstract available.

Reference Type BACKGROUND
PMID: 32085846 (View on PubMed)

Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM. ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). Adv Exp Med Biol. 2017;967:105-137. doi: 10.1007/978-3-319-63245-2_8.

Reference Type BACKGROUND
PMID: 29047084 (View on PubMed)

Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020 May;46(5):846-848. doi: 10.1007/s00134-020-05991-x. Epub 2020 Mar 3. No abstract available.

Reference Type BACKGROUND
PMID: 32125452 (View on PubMed)

Vaninov N. In the eye of the COVID-19 cytokine storm. Nat Rev Immunol. 2020 May;20(5):277. doi: 10.1038/s41577-020-0305-6. No abstract available.

Reference Type BACKGROUND
PMID: 32249847 (View on PubMed)

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar 28;395(10229):1033-1034. doi: 10.1016/S0140-6736(20)30628-0. Epub 2020 Mar 16. No abstract available.

Reference Type BACKGROUND
PMID: 32192578 (View on PubMed)

Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020 May;55(5):105954. doi: 10.1016/j.ijantimicag.2020.105954. Epub 2020 Mar 29.

Reference Type BACKGROUND
PMID: 32234467 (View on PubMed)

Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I, Kritas SK. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020 March-April,;34(2):327-331. doi: 10.23812/CONTI-E.

Reference Type BACKGROUND
PMID: 32171193 (View on PubMed)

Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol. 2020 Jun;16(6):308-310. doi: 10.1038/s41581-020-0284-7.

Reference Type BACKGROUND
PMID: 32273593 (View on PubMed)

Manzanares W, Langlois PL, Heyland DK. Pharmaconutrition with selenium in critically ill patients: what do we know? Nutr Clin Pract. 2015 Feb;30(1):34-43. doi: 10.1177/0884533614561794. Epub 2014 Dec 18.

Reference Type BACKGROUND
PMID: 25524883 (View on PubMed)

Angstwurm MW, Engelmann L, Zimmermann T, Lehmann C, Spes CH, Abel P, Strauss R, Meier-Hellmann A, Insel R, Radke J, Schuttler J, Gartner R. Selenium in Intensive Care (SIC): results of a prospective randomized, placebo-controlled, multiple-center study in patients with severe systemic inflammatory response syndrome, sepsis, and septic shock. Crit Care Med. 2007 Jan;35(1):118-26. doi: 10.1097/01.CCM.0000251124.83436.0E.

Reference Type BACKGROUND
PMID: 17095947 (View on PubMed)

Heyland DK, Dhaliwal R, Suchner U, Berger MM. Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intensive Care Med. 2005 Mar;31(3):327-37. doi: 10.1007/s00134-004-2522-z. Epub 2004 Dec 17.

Reference Type BACKGROUND
PMID: 15605227 (View on PubMed)

Hardy G, Hardy I, Manzanares W. Selenium supplementation in the critically ill. Nutr Clin Pract. 2012 Feb;27(1):21-33. doi: 10.1177/0884533611434116.

Reference Type BACKGROUND
PMID: 22307489 (View on PubMed)

Allingstrup M, Afshari A. Selenium supplementation for critically ill adults. Cochrane Database Syst Rev. 2015 Jul 27;2015(7):CD003703. doi: 10.1002/14651858.CD003703.pub3.

Reference Type BACKGROUND
PMID: 26214143 (View on PubMed)

Schmidt T, Pargger H, Seeberger E, Eckhart F, von Felten S, Haberthur C. Effect of high-dose sodium selenite in cardiac surgery patients: A randomized controlled bi-center trial. Clin Nutr. 2018 Aug;37(4):1172-1180. doi: 10.1016/j.clnu.2017.04.019. Epub 2017 May 2.

Reference Type BACKGROUND
PMID: 28502744 (View on PubMed)

Bargagli E, Olivieri C, Bennett D, Prasse A, Muller-Quernheim J, Rottoli P. Oxidative stress in the pathogenesis of diffuse lung diseases: a review. Respir Med. 2009 Sep;103(9):1245-56. doi: 10.1016/j.rmed.2009.04.014. Epub 2009 May 22.

Reference Type BACKGROUND
PMID: 19464864 (View on PubMed)

Ghosh P, Bhattacharjee A, Basu A, Singha Roy S, Bhattacharya S. Attenuation of cyclophosphamide-induced pulmonary toxicity in Swiss albino mice by naphthalimide-based organoselenium compound 2-(5-selenocyanatopentyl)-benzo[de]isoquinoline 1,3-dione. Pharm Biol. 2015 Apr;53(4):524-32. doi: 10.3109/13880209.2014.931440. Epub 2014 Dec 4.

Reference Type BACKGROUND
PMID: 25471377 (View on PubMed)

Kim KS, Suh GJ, Kwon WY, Kwak YH, Lee K, Lee HJ, Jeong KY, Lee MW. Antioxidant effects of selenium on lung injury in paraquat intoxicated rats. Clin Toxicol (Phila). 2012 Sep;50(8):749-53. doi: 10.3109/15563650.2012.708418.

Reference Type BACKGROUND
PMID: 22924652 (View on PubMed)

Liu J, Yang Y, Zeng X, Bo L, Jiang S, Du X, Xie Y, Jiang R, Zhao J, Song W. Investigation of selenium pretreatment in the attenuation of lung injury in rats induced by fine particulate matters. Environ Sci Pollut Res Int. 2017 Feb;24(4):4008-4017. doi: 10.1007/s11356-016-8173-0. Epub 2016 Dec 5.

Reference Type BACKGROUND
PMID: 27921246 (View on PubMed)

Amini P, Kolivand S, Saffar H, Rezapoor S, Motevaseli E, Najafi M, Nouruzi F, Shabeeb D, Musa AE. Protective Effect of Selenium-L-methionine on Radiation-induced Acute Pneumonitis and Lung Fibrosis in Rat. Curr Clin Pharmacol. 2019;14(2):157-164. doi: 10.2174/1574884714666181214101917.

Reference Type BACKGROUND
PMID: 30556505 (View on PubMed)

Zhang Y, Jiang M, Nouraie M, Roth MG, Tabib T, Winters S, Chen X, Sembrat J, Chu Y, Cardenes N, Tuder RM, Herzog EL, Ryu C, Rojas M, Lafyatis R, Gibson KF, McDyer JF, Kass DJ, Alder JK. GDF15 is an epithelial-derived biomarker of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2019 Oct 1;317(4):L510-L521. doi: 10.1152/ajplung.00062.2019. Epub 2019 Aug 21.

Reference Type BACKGROUND
PMID: 31432710 (View on PubMed)

Kempf T, Wollert KC. Risk stratification in critically ill patients: GDF-15 scores in adult respiratory distress syndrome. Crit Care. 2013 Jul 31;17(4):173. doi: 10.1186/cc12765.

Reference Type BACKGROUND
PMID: 23905849 (View on PubMed)

Jaspers I, Zhang W, Brighton LE, Carson JL, Styblo M, Beck MA. Selenium deficiency alters epithelial cell morphology and responses to influenza. Free Radic Biol Med. 2007 Jun 15;42(12):1826-37. doi: 10.1016/j.freeradbiomed.2007.03.017. Epub 2007 Mar 24.

Reference Type BACKGROUND
PMID: 17512462 (View on PubMed)

Tindell R, Wall SB, Li Q, Li R, Dunigan K, Wood R, Tipple TE. Selenium supplementation of lung epithelial cells enhances nuclear factor E2-related factor 2 (Nrf2) activation following thioredoxin reductase inhibition. Redox Biol. 2018 Oct;19:331-338. doi: 10.1016/j.redox.2018.07.020. Epub 2018 Sep 5.

Reference Type BACKGROUND
PMID: 30212802 (View on PubMed)

Rojo de la Vega M, Dodson M, Gross C, Mansour HM, Lantz RC, Chapman E, Wang T, Black SM, Garcia JG, Zhang DD. Role of Nrf2 and Autophagy in Acute Lung Injury. Curr Pharmacol Rep. 2016 Apr;2(2):91-101. doi: 10.1007/s40495-016-0053-2. Epub 2016 Feb 6.

Reference Type BACKGROUND
PMID: 27313980 (View on PubMed)

Zhang C, Lin J, Ge J, Wang LL, Li N, Sun XT, Cao HB, Li JL. Selenium triggers Nrf2-mediated protection against cadmium-induced chicken hepatocyte autophagy and apoptosis. Toxicol In Vitro. 2017 Oct;44:349-356. doi: 10.1016/j.tiv.2017.07.027. Epub 2017 Jul 29.

Reference Type BACKGROUND
PMID: 28765097 (View on PubMed)

Sakr Y, Reinhart K, Bloos F, Marx G, Russwurm S, Bauer M, Brunkhorst F. Time course and relationship between plasma selenium concentrations, systemic inflammatory response, sepsis, and multiorgan failure. Br J Anaesth. 2007 Jun;98(6):775-84. doi: 10.1093/bja/aem091. Epub 2007 May 3.

Reference Type BACKGROUND
PMID: 17478454 (View on PubMed)

Ricetti MM, Guidi GC, Bellisola G, Marrocchella R, Rigo A, Perona G. Selenium enhances glutathione peroxidase activity and prostacyclin release in cultured human endothelial cells. Concurrent effects on mRNA levels. Biol Trace Elem Res. 1994 Oct-Nov;46(1-2):113-23. doi: 10.1007/BF02790072.

Reference Type BACKGROUND
PMID: 7888276 (View on PubMed)

Fontaine M, Valli VE, Young LG. Studies on vitamin E and selenium deficiency in young pigs. IV. Effect on coagulation system. Can J Comp Med. 1977 Jan;41(1):64-76.

Reference Type BACKGROUND
PMID: 832191 (View on PubMed)

Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, Chen H, Ding X, Zhao H, Zhang H, Wang C, Zhao J, Sun X, Tian R, Wu W, Wu D, Ma J, Chen Y, Zhang D, Xie J, Yan X, Zhou X, Liu Z, Wang J, Du B, Qin Y, Gao P, Qin X, Xu Y, Zhang W, Li T, Zhang F, Zhao Y, Li Y, Zhang S. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020 Apr 23;382(17):e38. doi: 10.1056/NEJMc2007575. Epub 2020 Apr 8.

Reference Type BACKGROUND
PMID: 32268022 (View on PubMed)

Ma X, Bi S, Wang Y, Chi X, Hu S. Combined adjuvant effect of ginseng stem-leaf saponins and selenium on immune responses to a live bivalent vaccine of Newcastle disease virus and infectious bronchitis virus in chickens. Poult Sci. 2019 Sep 1;98(9):3548-3556. doi: 10.3382/ps/pez207.

Reference Type BACKGROUND
PMID: 31220864 (View on PubMed)

Marty AM, Jones MK. The novel Coronavirus (SARS-CoV-2) is a one health issue. One Health. 2020 Feb 14;9:100123. doi: 10.1016/j.onehlt.2020.100123. eCollection 2020 Jun. No abstract available.

Reference Type BACKGROUND
PMID: 32140538 (View on PubMed)

Chu VC, McElroy LJ, Chu V, Bauman BE, Whittaker GR. The avian coronavirus infectious bronchitis virus undergoes direct low-pH-dependent fusion activation during entry into host cells. J Virol. 2006 Apr;80(7):3180-8. doi: 10.1128/JVI.80.7.3180-3188.2006.

Reference Type BACKGROUND
PMID: 16537586 (View on PubMed)

Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005 Dec;69(4):635-64. doi: 10.1128/MMBR.69.4.635-664.2005.

Reference Type BACKGROUND
PMID: 16339739 (View on PubMed)

Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, Zheng M, Chen L, Li H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020 May;10(5):766-788. doi: 10.1016/j.apsb.2020.02.008. Epub 2020 Feb 27.

Reference Type BACKGROUND
PMID: 32292689 (View on PubMed)

Zhang J, Taylor EW, Bennett K, Saad R, Rayman MP. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr. 2020 Jun 1;111(6):1297-1299. doi: 10.1093/ajcn/nqaa095. No abstract available.

Reference Type BACKGROUND
PMID: 32342979 (View on PubMed)

Zhao Y, Yang M, Mao Z, Yuan R, Wang L, Hu X, Zhou F, Kang H. The clinical outcomes of selenium supplementation on critically ill patients: A meta-analysis of randomized controlled trials. Medicine (Baltimore). 2019 May;98(20):e15473. doi: 10.1097/MD.0000000000015473.

Reference Type BACKGROUND
PMID: 31096444 (View on PubMed)

Angstwurm MW, Gaertner R. Practicalities of selenium supplementation in critically ill patients. Curr Opin Clin Nutr Metab Care. 2006 May;9(3):233-8. doi: 10.1097/01.mco.0000222105.30795.7f.

Reference Type BACKGROUND
PMID: 16607122 (View on PubMed)

Manzanares W, Biestro A, Galusso F, Torre MH, Manay N, Facchin G, Hardy G. High-dose selenium for critically ill patients with systemic inflammation: pharmacokinetics and pharmacodynamics of selenious acid: a pilot study. Nutrition. 2010 Jun;26(6):634-40. doi: 10.1016/j.nut.2009.06.022. Epub 2010 Jan 15.

Reference Type BACKGROUND
PMID: 20080034 (View on PubMed)

Nuttall KL. Evaluating selenium poisoning. Ann Clin Lab Sci. 2006 Autumn;36(4):409-20.

Reference Type BACKGROUND
PMID: 17127727 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

2020-190

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

CoQ10 Biomarker Trial
NCT01408680 COMPLETED NA