COVID-19, Aging, and Cardiometabolic Risk Factors Study
NCT ID: NCT04802044
Last Updated: 2022-04-18
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
440 participants
OBSERVATIONAL
2020-12-08
2023-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
CArdioMetabolism and Atherosclerotic PlaqUe progreSsion
NCT05117424
Physiological Studies in Post-COVID-19 Syndrome, and the Association With DNA Methylation
NCT04859894
Effect of MetS* on Cognitive Performance and Physical Activity (Metabolic Syndrome)
NCT05702437
Gut Microbiota in Chronic Noncommunicable Diseases
NCT04820556
Cardiometabolic Syndrome Response to Therapeutic Lifestyle Changes
NCT04093440
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
However, the unprecedented rising numbers of COVID-19 patients in Indonesia has impacted the Indonesian healthcare system heavily. It has been reported that older age and the presence of cardiometabolic risk factors pose a poor prognostic factor of COVID-19. It is also important to note that in Indonesia, the presence of cardiometabolic risk factors is often observed at a younger age. Thus, this might also contribute to the higher mortality of COVID19 infected patients despite their relatively younger age in comparison to other countries. Nevertheless, specific data on the impact of aging and cardiometabolic risk factors on COVID-19 are fragmentary, justifying the achievement of a dedicated prospective observational study.
The CARAMEL study aims to specifically describe the phenotypic aging and cardiometabolic characteristics of patients with COVID-19 infection, in relation with the changes in the mucosal and systemic immune system. Particular attention will be devoted to obesity, central obesity, prediabetes, diabetes, hypertension, dyslipidemia, as well as anti-diabetic, antihypertensive, and anti-dyslipidemia therapies.
This study will provide answers to researchers, medical professionals, and especially patients, regarding the impact of aging and cardiometabolic risk factors for COVID-19 prognosis. This pilot study will be used for the development of new studies and for the establishment of recommendations for the care of patients with cardiometabolic risk factors and COVID-19.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* Minors, adults under guardianship, protected persons
* History of malignancy
* History of autoimmune disease
* Pregnancy
18 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Leiden University Medical Center
OTHER
Indonesia University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Dicky L. Tahapary
Principal Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Dicky L Tahapary
Role: PRINCIPAL_INVESTIGATOR
Indonesia University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Dr. Cipto Mangunkusumo National General Hospital
Jakarta Pusat, DKI Jakarta, Indonesia
Metabolic Disorder, Cardiovascular, and Aging Research Cluster IMERI-FKUI, Research Tower, 5th Floor
Jakarta Pusat, DKI Jakarta, Indonesia
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J Infect. 2020 Jun;80(6):e14-e18. doi: 10.1016/j.jinf.2020.03.005. Epub 2020 Mar 27.
Iannelli A, Favre G, Frey S, Esnault V, Gugenheim J, Bouam S, Schiavo L, Tran A, Alifano M. Obesity and COVID-19: ACE 2, the Missing Tile. Obes Surg. 2020 Nov;30(11):4615-4617. doi: 10.1007/s11695-020-04734-7. No abstract available.
Apicella M, Campopiano MC, Mantuano M, Mazoni L, Coppelli A, Del Prato S. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 2020 Sep;8(9):782-792. doi: 10.1016/S2213-8587(20)30238-2. Epub 2020 Jul 17.
Wu H, Ballantyne CM. Metabolic Inflammation and Insulin Resistance in Obesity. Circ Res. 2020 May 22;126(11):1549-1564. doi: 10.1161/CIRCRESAHA.119.315896. Epub 2020 May 21.
Andersen CJ, Murphy KE, Fernandez ML. Impact of Obesity and Metabolic Syndrome on Immunity. Adv Nutr. 2016 Jan 15;7(1):66-75. doi: 10.3945/an.115.010207. Print 2016 Jan.
Exley MA, Hand L, O'Shea D, Lynch L. Interplay between the immune system and adipose tissue in obesity. J Endocrinol. 2014 Nov;223(2):R41-8. doi: 10.1530/JOE-13-0516. Epub 2014 Sep 16.
Agrawal M, Kern PA, Nikolajczyk BS. The Immune System in Obesity: Developing Paradigms Amidst Inconvenient Truths. Curr Diab Rep. 2017 Aug 15;17(10):87. doi: 10.1007/s11892-017-0917-9.
Gerriets VA, MacIver NJ. Role of T cells in malnutrition and obesity. Front Immunol. 2014 Aug 11;5:379. doi: 10.3389/fimmu.2014.00379. eCollection 2014.
Han JM, Levings MK. Immune regulation in obesity-associated adipose inflammation. J Immunol. 2013 Jul 15;191(2):527-32. doi: 10.4049/jimmunol.1301035.
Rebello CJ, Kirwan JP, Greenway FL. Obesity, the most common comorbidity in SARS-CoV-2: is leptin the link? Int J Obes (Lond). 2020 Sep;44(9):1810-1817. doi: 10.1038/s41366-020-0640-5. Epub 2020 Jul 9.
Misumi I, Starmer J, Uchimura T, Beck MA, Magnuson T, Whitmire JK. Obesity Expands a Distinct Population of T Cells in Adipose Tissue and Increases Vulnerability to Infection. Cell Rep. 2019 Apr 9;27(2):514-524.e5. doi: 10.1016/j.celrep.2019.03.030.
Kwaifa IK, Bahari H, Yong YK, Noor SM. Endothelial Dysfunction in Obesity-Induced Inflammation: Molecular Mechanisms and Clinical Implications. Biomolecules. 2020 Feb 13;10(2):291. doi: 10.3390/biom10020291.
Li M, Qian M, Xu J. Vascular Endothelial Regulation of Obesity-Associated Insulin Resistance. Front Cardiovasc Med. 2017 Aug 9;4:51. doi: 10.3389/fcvm.2017.00051. eCollection 2017.
Engin A. Endothelial Dysfunction in Obesity. Adv Exp Med Biol. 2017;960:345-379. doi: 10.1007/978-3-319-48382-5_15.
Meyers MR, Gokce N. Endothelial dysfunction in obesity: etiological role in atherosclerosis. Curr Opin Endocrinol Diabetes Obes. 2007 Oct;14(5):365-9. doi: 10.1097/MED.0b013e3282be90a8.
van Deursen JM. The role of senescent cells in ageing. Nature. 2014 May 22;509(7501):439-46. doi: 10.1038/nature13193.
Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, Hou C, Wang H, Liu J, Yang D, Xu Y, Cao Z, Gao Z. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020 Jul 13;24(1):422. doi: 10.1186/s13054-020-03120-0.
Sungnak W, Huang N, Becavin C, Berg M, Queen R, Litvinukova M, Talavera-Lopez C, Maatz H, Reichart D, Sampaziotis F, Worlock KB, Yoshida M, Barnes JL; HCA Lung Biological Network. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020 May;26(5):681-687. doi: 10.1038/s41591-020-0868-6. Epub 2020 Apr 23.
Khemais-Benkhiat S, Idris-Khodja N, Ribeiro TP, Silva GC, Abbas M, Kheloufi M, Lee JO, Toti F, Auger C, Schini-Kerth VB. The Redox-sensitive Induction of the Local Angiotensin System Promotes Both Premature and Replicative Endothelial Senescence: Preventive Effect of a Standardized Crataegus Extract. J Gerontol A Biol Sci Med Sci. 2016 Dec;71(12):1581-1590. doi: 10.1093/gerona/glv213. Epub 2015 Dec 15.
Song J, Hu B, Qu H, Wang L, Huang X, Li M, Zhang M. Upregulation of angiotensin converting enzyme 2 by shear stress reduced inflammation and proliferation in vascular endothelial cells. Biochem Biophys Res Commun. 2020 May 7;525(3):812-818. doi: 10.1016/j.bbrc.2020.02.151. Epub 2020 Mar 10.
Bunyavanich S, Do A, Vicencio A. Nasal Gene Expression of Angiotensin-Converting Enzyme 2 in Children and Adults. JAMA. 2020 Jun 16;323(23):2427-2429. doi: 10.1001/jama.2020.8707.
Alsufyani HA, Docherty JR. The renin angiotensin aldosterone system and COVID-19. Saudi Pharm J. 2020 Aug;28(8):977-984. doi: 10.1016/j.jsps.2020.06.019. Epub 2020 Jul 2.
Al-Benna S. Association of high level gene expression of ACE2 in adipose tissue with mortality of COVID-19 infection in obese patients. Obes Med. 2020 Sep;19:100283. doi: 10.1016/j.obmed.2020.100283. Epub 2020 Jul 18.
Michalakis K, Ilias I. SARS-CoV-2 infection and obesity: Common inflammatory and metabolic aspects. Diabetes Metab Syndr. 2020 Jul-Aug;14(4):469-471. doi: 10.1016/j.dsx.2020.04.033. Epub 2020 Apr 29.
Telles S, Reddy SK, Nagendra HR. Obesity, Inflammation and Endothelial Dysfunction. J Chem Inf Model. 2019;53(9):1689-99.
Cervia C, Nilsson J, Zurbuchen Y, Valaperti A, Schreiner J, Wolfensberger A, Raeber ME, Adamo S, Weigang S, Emmenegger M, Hasler S, Bosshard PP, De Cecco E, Bachli E, Rudiger A, Stussi-Helbling M, Huber LC, Zinkernagel AS, Schaer DJ, Aguzzi A, Kochs G, Held U, Probst-Muller E, Rampini SK, Boyman O. Systemic and mucosal antibody responses specific to SARS-CoV-2 during mild versus severe COVID-19. J Allergy Clin Immunol. 2021 Feb;147(2):545-557.e9. doi: 10.1016/j.jaci.2020.10.040. Epub 2020 Nov 20.
Peron JPS, Nakaya H. Susceptibility of the Elderly to SARS-CoV-2 Infection: ACE-2 Overexpression, Shedding, and Antibody-dependent Enhancement (ADE). Clinics (Sao Paulo). 2020;75:e1912. doi: 10.6061/clinics/2020/e1912. Epub 2020 May 15.
Lopes-Paciencia S, Saint-Germain E, Rowell MC, Ruiz AF, Kalegari P, Ferbeyre G. The senescence-associated secretory phenotype and its regulation. Cytokine. 2019 May;117:15-22. doi: 10.1016/j.cyto.2019.01.013. Epub 2019 Feb 16.
Asghar M, Yman V, Homann MV, Sonden K, Hammar U, Hasselquist D, Farnert A. Cellular aging dynamics after acute malaria infection: A 12-month longitudinal study. Aging Cell. 2018 Feb;17(1):e12702. doi: 10.1111/acel.12702. Epub 2017 Nov 16.
Pathai S, Lawn SD, Gilbert CE, McGuinness D, McGlynn L, Weiss HA, Port J, Christ T, Barclay K, Wood R, Bekker LG, Shiels PG. Accelerated biological ageing in HIV-infected individuals in South Africa: a case-control study. AIDS. 2013 Sep 24;27(15):2375-84. doi: 10.1097/QAD.0b013e328363bf7f.
van de Berg PJ, Griffiths SJ, Yong SL, Macaulay R, Bemelman FJ, Jackson S, Henson SM, ten Berge IJ, Akbar AN, van Lier RA. Cytomegalovirus infection reduces telomere length of the circulating T cell pool. J Immunol. 2010 Apr 1;184(7):3417-23. doi: 10.4049/jimmunol.0903442. Epub 2010 Feb 22.
Robinson MW, McGuinness D, Swann R, Barclay S, Mills PR, Patel AH, McLauchlan J, Shiels PG. Non cell autonomous upregulation of CDKN2 transcription linked to progression of chronic hepatitis C disease. Aging Cell. 2013 Dec;12(6):1141-3. doi: 10.1111/acel.12125. Epub 2013 Aug 12.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
CARAMEL
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.