Role of Regulatory B Cells in the Pathogenesis of Metabolic Associated Fatty Liver Disease
NCT ID: NCT04720560
Last Updated: 2024-07-30
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
174 participants
OBSERVATIONAL
2023-12-01
2024-12-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Evaluation of Patients With Liver Disease
NCT00001971
Hepatic Steatosis and Chronic Hepatitis B Virus
NCT05678582
Platelets Indices and Its Role to Predict Liver Fibrosis in Patients With Chronic Hepatitis B Infection
NCT05567614
Impact of Fructose on Metabolism, Energy Homeostasis and Magnetic Resonance Biomarkers in Nonalcoholic Fatty Liver Disease
NCT01930123
Metabolic Syndrome and Fatty Liver Disease Among Egyptian Patients with Chronic HBV
NCT06589167
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Eslam et al. (2020) recently published an international expert consensus statement about a new definition of metabolic dysfunction-associated fatty liver disease (MAFLD) to replace non-alcoholic fatty liver disease (NAFLD).
The new nomenclature of MAFLD is based on the presence of steatosis in \>5% of hepatocytes and the absence of excessive alcohol consumption or other causes of chronic liver disease, diagnosis of MAFLD could be established on the presence of hepatic steatosis in combination with one of the following three criteria: overweight/obesity; presence of type 2 diabetes mellitus; or evidence of metabolic dysregulation (Eslam et al. (2020).
Metabolic dysregulation is defined as having at least 2 of the following metabolic risk abnormalities: high waist circumference, high blood pressure, high cholesterol, pre-diabetes, insulin resistance, and high plasma C-reactive protein levels (Eslam et al. (2020).
New diagnostic criteria for MAFLD were proposed, in which hepatic steatosis (HS) detected either by imaging techniques, blood biomarkers/scores or by liver histology (Bedogni et al., 2006; Wong et al., 2019).
On the other hand, NAFLD is commonly associated with one or more component of metabolic syndrome such as obesity, diabetes mellitus, and dyslipidemia and is defined as the presence of ≥ 5% hepatic steatosis in histological examination without evidence of hepatocellular injury such as hepatocyte ballooning (Chalasani et al., 2018).
Around 20% of patients with NAFLD develop non-alcoholic steatohepatitis (NASH) which may progress to cirrhosis, however the most common cause of death in NAFLD patients is cardiovascular disease, and NAFLD is the third most common cause of hepatocellular carcinoma (Matteoni et al., 1999; Chalasani et al., 2018).
The spectrum of NAFLD ranges from simple fatty liver with little inflammation to non-alcoholic steatohepatitis (NASH) with liver inflammation and fibrosis. The global prevalence of NAFLD is about 25.2% whereas the limited number of studies from Africa reports 13% (Younossi et al., 2016).
"Burned out" NAFLD can be a hidden cause of cryptogenic cirrhosis. So, early diagnosis, and treatment of NAFLD and underlying predisposing factors are important to avoid liver damage which may progress to liver cell failure (Paul, 2020).
NAFLD is strongly associated with MS and is currently considered as the hepatic manifestation of MS. In addition, obesity is a common risk factor for NAFLD (fan et al., 2008; Chen et al., 2011; Medina-Santillán et al., 2013).
Liver is not only the largest metabolic organ, but also it act as an immunological organ. Immune cells including liver resident macrophages )Kupffer cells, KCs( and lymphocytes account for 10-20% of total cells in the liver (Racanelli et al., 2006; Gao et al., 2008).
These immune cells cross the blood from gastrointestinal tract, which contains abundant antigens from outside and sometime pathogens under pathological conditions, to maintain a unique immune tolerance microenvironment (Racanelli et al., 2006).
However, when excessive fat deposited in the hepatocytes and metabolic status was changed, the immune microenvironment was found to be also changed. Numerous studies indicated that different immune cells in the liver (both innate and adaptive) played critical roles in the pathogenesis of NAFLD and NASH(Feng, 2020).
Innate immune system includes KCs/infiltrated macrophages, neutrophils, dendritic cells (DCs), natural killer (NK) cells, while adaptive immune system includes conventional T cells, natural killer T (NKT) cells and B cells(Feng, 2020).
Smith et al. (2003) examined healthy human donor livers and detected the B cells located in the portal tracts and those scattered throughout the liver.
B cells are specialized adaptive immune cells producing antibodies, it can also secrete cytokines and regulate the activation and function of other cells. Little studies focused on the role of B cells in the pathogenesis of NAFLD, especially direct effects. One study showed that increased production of T-helper 1 cell (Th1) cytokines, such as IL-6 and TNF-a, which were found in intrahepatic B cells in mice fed with high-fat diet. These cytokines may promote Th1 cell differentiation and contribute to inflammation in NAFLD (Zhang et al., 2016).
As regard role of B cells in the pathogenesis of metabolic syndrome (MS) which promote inflammation in obesity and type 2 diabetes mellitus (T2DM) through modulation of T-cell function and an inflammatory cytokine profile and they also promote insulin resistance (IR) through the production of pathogenic IgG2a. Meanwhile, B cells can regulate T cells via a major histocompatibility complex-dependent manner and promote inflammation mediated by T cells in both obese mice and T2DM patients (Jagannathan et al., 2009; Winer et al., 2011; DeFuria et al., 2013).
NAFLD is strongly associated with MS and is currently considered as the hepatic manifestation of MS. In addition, obesity is a common risk factor for NAFLD (fan et al., 2008; Chen et al., 2011; Medina-Santillán et al., 2013).
Surprisingly, IgA, which is mainly produced by B cells, has been reported to be positively related to the stages of fibrosis in patients with NAFLD. The B cell activating factor (BAFF), which regulates the development and maturation of B cells, was found to be increased in the serum of patients with non-alcoholic steatohepatitis (NASH). All these results indicate that there are systemic changes in B cells in patients with NAFLD (Kim et al., 2009; Miyake et al., 2013; McPherson et al., 2014).
Based on the changes in humoral factors in NAFLD and the roles of B cells in MS, we hypothesized that B cells might participate in the pathogenesis of NAFLD. So, our study aimed to focus on B cells, to investigate its general changes and their functions in the pathogenesis of the disease.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_ONLY
PROSPECTIVE
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
regulatory B cell by flow cytometry
4-Evaluation of the Frequency of regulatory B cells (Bregs) by Flow Cytometry Using flow cytometry, circulating Bregs will be detected using FITC-conjugated-CD38, PE-conjugated-CD24 (Bioscience, USA), and PerCP-conjugated CD19 (BD Bioscience, USA). Briefly, 100 µl of blood sample will be incubated with 10 µL of CD24, CD38 and CD19 for 20 minutes at 4 °C in the dark. Following incubation, RBCs will be lysed and washed. Cells will be fixed and permeabilized then stained with APC-conjugated IL-10 (BD Bioscience, San Jose, CA, USA) and analysis will be done by FACS Calibur flow cytometry with CellQuest software (Becton Dickinson Biosciences, San Jose, CA, USA).
An isotype-matched negative control will be used for each sample. Forward and side scatter histograms will be used to define the lymphocytes population. CD19+ IL-10+ B cells will be gated, then the expression of CD38 and CD24 on the CD19+B cells will be detected. Bregs will be identified as CD19+ IL-10+CD24+hiCD38+hi cells.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
18 Years
80 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Assiut University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Amira Mohammed Abdel Mowgod
Doctor
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Medicine
Asyut, , Egypt
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Vilar-Gomez E, Chalasani N. Non-invasive assessment of non-alcoholic fatty liver disease: Clinical prediction rules and blood-based biomarkers. J Hepatol. 2018 Feb;68(2):305-315. doi: 10.1016/j.jhep.2017.11.013. Epub 2017 Dec 2.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
MAFLD
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.