Ankle Robotics After Stroke

NCT ID: NCT04594837

Last Updated: 2023-01-26

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Clinical Phase

NA

Total Enrollment

140 participants

Study Classification

INTERVENTIONAL

Study Start Date

2020-08-20

Study Completion Date

2025-02-28

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The randomized study (in Phase II of the U44) compares the efficacy and durability of 9 weeks (18 sessions) of robot-assisted physical therapy (PTR) versus physical therapy (PT) alone on foot drop as assessed by gait biomechanics (ankle angle at initial contact, peak swing ankle angle, number of heel-first strikes - % total steps, gait velocity) and blinded clinician assessment (dorsiflexion active range of motion, ankle muscle strength, assistive device needs).

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

This proposal investigates a portable ankle robot (AMBLE) to be used during over-ground mobility training to reduce foot drop and improve walking function in hemiparetic (half-body, partially paralyzed stroke patients with foot drop (inability to properly lift and clear the foot during walking. About 30% of stroke survivors are left with permanent ankle weakness that impairs their mobility and increases fall-risk. Currently, stroke survivors with foot drop live with a cane or other assistive device, and often ankle-foot braces (AFOs) for safety. These assistive devices do not reverse or reduce the underlying neurological foot drop problem. Recognizing the crucial role of ankle function in walking and balance, and recognizing that the distal part of the lower extremity often suffers the greatest damage after a human stroke, the investigators have come up with a portable ankle robot as a tool for therapists to help shape recovery of walking.

The AMBLE, and its underlying control system, uses information about how patients are walking from one step to another to assist and shape foot lifting so as to help re- train walking recovery by a process that neuroscientists call motor learning. It is the combination of the partially paralyzed stroke survivor's movement efforts with timely assistance "only as needed" by the robot that investigators and others show is the key to movement recovery after stroke. Thus, the ankle robot is not a crutch, but a learning and measuring device that incrementally "gets out of the way" of the learner to facilitate human robot learning such that the human takes over more of the volitional learning.

The research team at University of Maryland has demonstrated in 4 prior studies using seated and treadmill based robot assisted training using a bulky laboratory robot programmed with a motor learning formula that can improve ankle motor control in both the early and chronic phases of stroke, and this can improve over-ground unassisted walking. A significant proportion of stroke survivors showed session by session recovery of volitional (not assisted by the robot) ankle lifting during walking across 6 weeks of three 30- 45 minute sessions of robot training while walking on a treadmill, even years after their stroke. In fact, it has been found that two weeks of 3 sessions per week ankle robotics training was the time profile for most motor learning recovery to reduce foot drop. This information has informed the design of the study described below.

Previous research was done using a bulky, heavy (\~8 lbs), and expensive laboratory robot that only allowed seated or treadmill based training because it was tethered by wires. This greatly limits how it can be used by physical therapists, and is not appropriately configured for ease of use by physical therapists in practice. NextStep Robotics invented and built the ankle robots motor learning programs with a lot of input from physical therapists and other rehabilitation clinicians into a portable lightweight robot that can be used over-ground anywhere with blue tooth controls that also tell the therapist precisely how well the stroke survivors is learning, step by step. It is this new portable ankle robot that is configured for use in practice that investigators seek to test in studies with physical therapists using it fully integrated into their usual outpatient stroke mobility recovery training at University of Maryland Orthopedics and Rehabilitation Institute.

This U44 Award from the National Institute of Neurological Disorders and Stroke (NINDS) is not a typical single phase randomized clinical study, but consists of Phase I that completes commercial design of the robot the first year, followed by Phase II randomized clinical trial across years 2-4 of a finalized commercial version of the ankle robot.

Phase II (following completion of commercial design in Phase I) is a randomized (group assignment by chance), blinded (outcome testing done by technicians unaware of patient group assignment), two arm (2 groups) study that investigates the hypothesis that in subacute (6 weeks to 6 months) stroke subjects with foot drop, AMBLE integrated physical therapy (PTR) consisting of 18 training sessions over nine weeks is more effective than usual physical therapy (PT) to improve foot drop outcomes measured by movement analyses of walking, and by standardized clinical assessments of walking including specific foot drop outcomes as assessed by a certified PT clinician (blinded to treatment assignment), cross checked by blinded review of 2 other clinicians of films of the standardized mobility assessments to provide a consensus impartial judgement. Notably, this Phase II study focuses on sub-acute stroke recovery (6 weeks to 6 months) because it represents a therapeutic window into which conventional outpatient physical therapy is typically front-loaded to optimize outcomes. This phase of stroke rehabilitation is selected to test the AMBLE in real world settings when outpatient physical therapy typically occurs, using a treatment frequency and duration (18 physical therapy sessions across 9 weeks) that is representative of practice in Maryland and most of the United States. If wearing the AMBLE robot during physical therapy in this time-frame reduces foot drop and improves longer term outcomes measured 3 months after all robotics therapy has ended, then the investigators will apply for FDA approval for the first robotics device to actively treat foot drop after stroke.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Foot Drop Stroke Hemiparesis

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

SINGLE

Outcome Assessors

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

PTR (Physical Therapy while wearing Robot group) (Phase II)

Subjects receive 18 one-hour PT training sessions over 9 weeks while wearing the robot initially parameterized to individual deficit severity. Subjects perform over-ground mobility tasks of increasing challenge with robotic assist, as needed. Training is generally divided into 3 phases based on individual ability to address gait deficits, postural transitions, physical demand and environmental terrain.

Group Type EXPERIMENTAL

PTR Physical Therapy while wearing Robot group (Phase II)

Intervention Type DEVICE

Subjects receive 18 one-hour PT training sessions over 9 weeks while wearing the robot initially parameterized to individual deficit severity. Subjects perform over-ground mobility tasks of increasing challenge with robotic assist, as needed. Training is generally divided into 3 phases based on individual ability to address gait deficits, postural transitions, physical demand and environmental terrain.

PT (Physical Therapy Only) (Phase II)

Subjects receive 18 one-hour PT training sessions over 9 weeks. Subjects perform over-ground mobility tasks of increasing challenge with therapist assist, as needed. Training is generally divided into 3 phases based on individual ability to address gait deficits, postural transitions, physical demand and environmental terrain.

Group Type ACTIVE_COMPARATOR

Physical Therapy Only (Phase II)

Intervention Type OTHER

Subjects receive 18 one-hour PT training sessions over 9 weeks. Subjects perform over-ground mobility tasks of increasing challenge with therapist assist, as needed. Training is generally divided into 3 phases based on individual ability to address gait deficits, postural transitions, physical demand and environmental terrain.

X-PTR, Cross over group for Physical Therapy n Sub-Acute group.

Participants enrolled in the physical therapy only group will be given the option to re-enroll as a cross over participant to receive 18 one-hour PT training sessions over 9 weeks while wearing the robot initially parameterized to individual deficit severity. Subjects perform over-ground mobility tasks of increasing challenge with robotic assist, as needed. Training is generally divided into 3 phases based on individual ability to address gait deficits, postural transitions, physical demand and environmental terrain.

Group Type EXPERIMENTAL

Cross over group for Physical Therapy n Sub-Acute group. (Phase II)

Intervention Type DEVICE

Participants enrolled in the physical therapy only group will be given the option to re-enroll as a cross over participant to receive 18 one-hour PT training sessions over 9 weeks while wearing the robot initially parameterized to individual deficit severity. Subjects perform over-ground mobility tasks of increasing challenge with robotic assist, as needed. Training is generally divided into 3 phases based on individual ability to address gait deficits, postural transitions, physical demand and environmental terrain.

C-PTR, Chronic Stroke Subjects to receive robotic gait training therapy.

Chronic stroke subjects receive 18 one-hour PT training sessions over 9 weeks while wearing the robot initially parameterized to individual deficit severity. Subjects perform over-ground mobility tasks of increasing challenge with robotic assist, as needed. Training is generally divided into 3 phases based on individual ability to address gait deficits, postural transitions, physical demand and environmental terrain.

Group Type EXPERIMENTAL

Chronic Stroke Subjects to receive robotic gait training therapy.

Intervention Type DEVICE

Chronic stroke subjects receive 18 one-hour PT training sessions over 9 weeks while wearing the robot initially parameterized to individual deficit severity. Subjects perform over-ground mobility tasks of increasing challenge with robotic assist, as needed. Training is generally divided into 3 phases based on individual ability to address gait deficits, postural transitions, physical demand and environmental terrain.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

PTR Physical Therapy while wearing Robot group (Phase II)

Subjects receive 18 one-hour PT training sessions over 9 weeks while wearing the robot initially parameterized to individual deficit severity. Subjects perform over-ground mobility tasks of increasing challenge with robotic assist, as needed. Training is generally divided into 3 phases based on individual ability to address gait deficits, postural transitions, physical demand and environmental terrain.

Intervention Type DEVICE

Physical Therapy Only (Phase II)

Subjects receive 18 one-hour PT training sessions over 9 weeks. Subjects perform over-ground mobility tasks of increasing challenge with therapist assist, as needed. Training is generally divided into 3 phases based on individual ability to address gait deficits, postural transitions, physical demand and environmental terrain.

Intervention Type OTHER

Cross over group for Physical Therapy n Sub-Acute group. (Phase II)

Participants enrolled in the physical therapy only group will be given the option to re-enroll as a cross over participant to receive 18 one-hour PT training sessions over 9 weeks while wearing the robot initially parameterized to individual deficit severity. Subjects perform over-ground mobility tasks of increasing challenge with robotic assist, as needed. Training is generally divided into 3 phases based on individual ability to address gait deficits, postural transitions, physical demand and environmental terrain.

Intervention Type DEVICE

Chronic Stroke Subjects to receive robotic gait training therapy.

Chronic stroke subjects receive 18 one-hour PT training sessions over 9 weeks while wearing the robot initially parameterized to individual deficit severity. Subjects perform over-ground mobility tasks of increasing challenge with robotic assist, as needed. Training is generally divided into 3 phases based on individual ability to address gait deficits, postural transitions, physical demand and environmental terrain.

Intervention Type DEVICE

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

PTR PT X-PTR C-PTR

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Ages 18 and older
* In the subacute phase of stroke recovery (\>6 weeks to \<6 months post-stroke) with residual hemiparesis of the lower extremity that includes symptoms of foot-drop. - or - In the chronic phase of stroke recovery (\>6 months post-stroke) with residual hemiparesis of the lower extremity that includes symptoms of foot-drop.
* Clear indications of hemiparetic gait by clinical observation

Exclusion Criteria

* Cardiac history of (a) unstable angina, (b) recent (less than 3 months) myocardial infarction, congestive heart failure (NYHA category II); (c) hemodynamically significant valvular dysfunction
* Hypertension that is a contraindication for routine physical therapy (greater than 160/100 on two assessments).
* Medical History: (a) recent hospitalization (less than 3 months) for severe medical disease, (b) symptomatic peripheral arterial occlusive disease, (c) orthopedic or chronic pain conditions that significantly alter gait function, (d) pulmonary or renal failure (e) active cancer
* History of non-stroke neuromuscular disorder restricting gait.
* Aphasia or cognitive functioning that confounds participation, defined as unable to follow 2 step commands or judgment of the medical officer or therapist.
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

NextStep Robotics Inc.

INDUSTRY

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Brad Hennessie, MHA, MBA

Role: STUDY_DIRECTOR

NextStep Robotics Inc.

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University of Maryland Rehabilitation & Orthopaedic Institute

Baltimore, Maryland, United States

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

United States

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Josh Rudnicki

Role: CONTACT

443-869-3518

Richard Macko, MD

Role: CONTACT

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Josh Rudnicki

Role: primary

443-869-3518

References

Explore related publications, articles, or registry entries linked to this study.

Roy A, Hennessie B, Hafer-Macko C, Westlake K, Macko R. Dorsiflexion Specific Ankle Robotics to Enhance Motor Learning After Stroke: A Preliminary Report. Res Sq [Preprint]. 2024 Jun 25:rs.3.rs-4390770. doi: 10.21203/rs.3.rs-4390770/v1.

Reference Type DERIVED
PMID: 38978605 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

1 U44 111076-01

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Ankle Exoskeleton for Stroke Gait Enhancement
NCT07179627 NOT_YET_RECRUITING NA