EEG-based Depth of Anesthesia-monitoring, Effects on Dosage and Cognition
NCT ID: NCT04529304
Last Updated: 2023-11-07
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
100 participants
INTERVENTIONAL
2021-01-08
2025-12-20
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Observational of Emergence Time Between Patients Receive General Anesthesia With BIS or Spectrogram EEG Monitor
NCT05208502
Can CSM Monitor Depth of Anaesthesia Just as Good as BIS?
NCT00251810
Detection of Consciousness by EEG and Auditory Evoked Potentials
NCT01720615
Characterizing the Electroencephalogram Signature of Fentanyl During Induction of General Anesthesia
NCT03866278
Anesthesia Depth During Opioid Free Anesthesia
NCT06227143
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Anesthetic drugs are usually administered in pharmacological models based on a population taking into account their age, weight and height. However, there is a significant difference in how patients respond to these models. In adults there is evidence that the doses needed to achieve consciousness varies with a factor of 2 above and below suggested doses. In under-dosing of anesthetics there is a risk of peroperative awareness . On the other hand there is also evidence that overdosing of anesthetics has harmful effects; children receiving more than 4% Sevoflurane can demonstrate epileptiform activity , and adults overdosing into "burst suppression" during anesthesia has a higher risk of postoperative delirium (POD) and increased occurrence of postoperative cognitive dysfunction (POCD) .
Bispectral Index (BIS) is an algorithm developed by Aspect Medical Systems in 1994, which is based on weighted sums of EEG subparameters to present an index from 0 to 100 for depth of anesthesia, where 100 is wide awake, and 0 is an isoelectric EEG. The BIS target for a deep enough anesthesia is set to be between 40 and 60. The BIS number is often in concurrence with other clinical observations related to anesthetic depth, however there is also an experience of divergence. BIS and other EEG-based indices are programmed from adult cohorts, and cannot be directly trusted in children, or the elderly . There is also an incapability in these preprogrammed indices (BIS and other) to integrate how specific anesthetic drugs affect the EEG, and thenceforth the BIS value. An example of this is how the drug Ketamine induces a specific gamma-frequency in the EEG, which the BIS-index translate as a lighter anesthesia, even though the drug is administered "on top of" an already deep level of anesthesia.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
OTHER
TRIPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Visual EEG
Individual dosing of anesthetic medications based on EEG AND other standardized clinical observations (BP, HR)
Bilateral Bispectral Index and EEG
raw-EEG and spectrographic EEG-visualization based on the Medtronic Device "Bilateral BiSpectral Index"
Blinded EEG
Individual dosing of anesthetic medications based on standardized clinical observations (BP, HR).
Bilateral Bispectral Index and EEG
raw-EEG and spectrographic EEG-visualization based on the Medtronic Device "Bilateral BiSpectral Index"
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Bilateral Bispectral Index and EEG
raw-EEG and spectrographic EEG-visualization based on the Medtronic Device "Bilateral BiSpectral Index"
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Participants are eligible to be included in the study only if all of the following criteria apply:
Age
1. Participant must be above the age of 18 years , at the time of signing the informed consent.
Sex
2. Male and/or female
Informed Consent
3. Capable of giving signed informed consent as described in protocol which includes compliance with the requirements and restrictions listed in the informed consent form (ICF) and in the protocol
Exclusion Criteria
4. Psychiatric disorders
5. Pregnancy
6. Breast feeding
7. Using antiepileptic drugs.
8. Central neurological disease
9. Unable to complete baseline CANTAB-test.
18 Years
85 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Oslo University Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Luis George Romundstad
Principal Investigator, Medical Doctor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Luis G Romundstad, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
Oslo University Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Oslo University Hospital
Oslo, , Norway
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
References
Explore related publications, articles, or registry entries linked to this study.
Gibbs FA, Gibbs LE, Lennox WG. Effects on the electroencephalogram of certain drugs which influence nervous activity. Arch Intern Med. 1937;60:154-66
KIERSEY DK, BICKFORD RG, FAULCONER A Jr. Electro-encephalographic patterns produced by thiopental sodium during surgical operations; description and classification. Br J Anaesth. 1951 Jul;23(3):141-52. doi: 10.1093/bja/23.3.141. No abstract available.
Tinker JH, Sharbrough FW, Michenfelder JD. Anterior shift of the dominant EEG rhytham during anesthesia in the Java monkey: correlation with anesthetic potency. Anesthesiology. 1977 Apr;46(4):252-9. doi: 10.1097/00000542-197704000-00005.
John ER, Prichep LS, Kox W, Valdes-Sosa P, Bosch-Bayard J, Aubert E, Tom M, di Michele F, Gugino LD. Invariant reversible QEEG effects of anesthetics. Conscious Cogn. 2001 Jun;10(2):165-83. doi: 10.1006/ccog.2001.0507.
Gugino LD, Chabot RJ, Prichep LS, John ER, Formanek V, Aglio LS. Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane. Br J Anaesth. 2001 Sep;87(3):421-8. doi: 10.1093/bja/87.3.421.
Feshchenko VA, Veselis RA, Reinsel RA. Propofol-induced alpha rhythm. Neuropsychobiology. 2004;50(3):257-66. doi: 10.1159/000079981.
Cimenser A, Purdon PL, Pierce ET, Walsh JL, Salazar-Gomez AF, Harrell PG, Tavares-Stoeckel C, Habeeb K, Brown EN. Tracking brain states under general anesthesia by using global coherence analysis. Proc Natl Acad Sci U S A. 2011 May 24;108(21):8832-7. doi: 10.1073/pnas.1017041108. Epub 2011 May 9.
Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KF, Salazar-Gomez AF, Harrell PG, Sampson AL, Cimenser A, Ching S, Kopell NJ, Tavares-Stoeckel C, Habeeb K, Merhar R, Brown EN. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):E1142-51. doi: 10.1073/pnas.1221180110. Epub 2013 Mar 4.
Ching S, Cimenser A, Purdon PL, Brown EN, Kopell NJ. Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness. Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22665-70. doi: 10.1073/pnas.1017069108. Epub 2010 Dec 13.
Supp GG, Siegel M, Hipp JF, Engel AK. Cortical hypersynchrony predicts breakdown of sensory processing during loss of consciousness. Curr Biol. 2011 Dec 6;21(23):1988-93. doi: 10.1016/j.cub.2011.10.017. Epub 2011 Nov 17.
Chauvette S, Crochet S, Volgushev M, Timofeev I. Properties of slow oscillation during slow-wave sleep and anesthesia in cats. J Neurosci. 2011 Oct 19;31(42):14998-5008. doi: 10.1523/JNEUROSCI.2339-11.2011.
Lewis LD, Weiner VS, Mukamel EA, Donoghue JA, Eskandar EN, Madsen JR, Anderson WS, Hochberg LR, Cash SS, Brown EN, Purdon PL. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):E3377-86. doi: 10.1073/pnas.1210907109. Epub 2012 Nov 5.
Li D, Voss LJ, Sleigh JW, Li X. Effects of volatile anesthetic agents on cerebral cortical synchronization in sheep. Anesthesiology. 2013 Jul;119(1):81-8. doi: 10.1097/ALN.0b013e31828e894f.
Wang K, Steyn-Ross ML, Steyn-Ross DA, Wilson MT, Sleigh JW. EEG slow-wave coherence changes in propofol-induced general anesthesia: experiment and theory. Front Syst Neurosci. 2014 Oct 29;8:215. doi: 10.3389/fnsys.2014.00215. eCollection 2014.
Vizuete JA, Pillay S, Ropella KM, Hudetz AG. Graded defragmentation of cortical neuronal firing during recovery of consciousness in rats. Neuroscience. 2014 Sep 5;275:340-51. doi: 10.1016/j.neuroscience.2014.06.018. Epub 2014 Jun 18.
Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical Electroencephalography for Anesthesiologists: Part I: Background and Basic Signatures. Anesthesiology. 2015 Oct;123(4):937-60. doi: 10.1097/ALN.0000000000000841.
Lee JM, Akeju O, Terzakis K, Pavone KJ, Deng H, Houle TT, Firth PG, Shank ES, Brown EN, Purdon PL. A Prospective Study of Age-dependent Changes in Propofol-induced Electroencephalogram Oscillations in Children. Anesthesiology. 2017 Aug;127(2):293-306. doi: 10.1097/ALN.0000000000001717.
Iwakiri H, Nishihara N, Nagata O, Matsukawa T, Ozaki M, Sessler DI. Individual effect-site concentrations of propofol are similar at loss of consciousness and at awakening. Anesth Analg. 2005 Jan;100(1):107-110. doi: 10.1213/01.ANE.0000139358.15909.EA.
Avidan MS, Jacobsohn E, Glick D, Burnside BA, Zhang L, Villafranca A, Karl L, Kamal S, Torres B, O'Connor M, Evers AS, Gradwohl S, Lin N, Palanca BJ, Mashour GA; BAG-RECALL Research Group. Prevention of intraoperative awareness in a high-risk surgical population. N Engl J Med. 2011 Aug 18;365(7):591-600. doi: 10.1056/NEJMoa1100403.
Palanca BJ, Mashour GA, Avidan MS. Processed electroencephalogram in depth of anesthesia monitoring. Curr Opin Anaesthesiol. 2009 Oct;22(5):553-9. doi: 10.1097/ACO.0b013e3283304032.
Constant I, Sabourdin N. The EEG signal: a window on the cortical brain activity. Paediatr Anaesth. 2012 Jun;22(6):539-52. doi: 10.1111/j.1460-9592.2012.03883.x.
Gibert S, Sabourdin N, Louvet N, Moutard ML, Piat V, Guye ML, Rigouzzo A, Constant I. Epileptogenic effect of sevoflurane: determination of the minimal alveolar concentration of sevoflurane associated with major epileptoid signs in children. Anesthesiology. 2012 Dec;117(6):1253-61. doi: 10.1097/ALN.0b013e318273e272.
Fritz BA, Kalarickal PL, Maybrier HR, Muench MR, Dearth D, Chen Y, Escallier KE, Ben Abdallah A, Lin N, Avidan MS. Intraoperative Electroencephalogram Suppression Predicts Postoperative Delirium. Anesth Analg. 2016 Jan;122(1):234-42. doi: 10.1213/ANE.0000000000000989.
Soehle M, Dittmann A, Ellerkmann RK, Baumgarten G, Putensen C, Guenther U. Intraoperative burst suppression is associated with postoperative delirium following cardiac surgery: a prospective, observational study. BMC Anesthesiol. 2015 Apr 28;15:61. doi: 10.1186/s12871-015-0051-7.
Samarkandi AH. The bispectral index system in pediatrics--is it related to the end-tidal concentration of inhalation anesthetics? Middle East J Anaesthesiol. 2006 Feb;18(4):769-78.
Tirel O, Wodey E, Harris R, Bansard JY, Ecoffey C, Senhadji L. Variation of bispectral index under TIVA with propofol in a paediatric population. Br J Anaesth. 2008 Jan;100(1):82-7. doi: 10.1093/bja/aem339.
Avidan MS, Zhang L, Burnside BA, Finkel KJ, Searleman AC, Selvidge JA, Saager L, Turner MS, Rao S, Bottros M, Hantler C, Jacobsohn E, Evers AS. Anesthesia awareness and the bispectral index. N Engl J Med. 2008 Mar 13;358(11):1097-108. doi: 10.1056/NEJMoa0707361.
Hajat Z, Ahmad N, Andrzejowski J. The role and limitations of EEG-based depth of anaesthesia monitoring in theatres and intensive care. Anaesthesia. 2017 Jan;72 Suppl 1:38-47. doi: 10.1111/anae.13739.
Chhabra A, Subramaniam R, Srivastava A, Prabhakar H, Kalaivani M, Paranjape S. Spectral entropy monitoring for adults and children undergoing general anaesthesia. Cochrane Database Syst Rev. 2016 Mar 14;3(3):CD010135. doi: 10.1002/14651858.CD010135.pub2.
Juel, Bjørn Erik; Romundstad, Luis Georg; Kolstad, Frode; Storm, Johan Frederik; Larsson, Pål Gunnar. Changes in EEG captured by Directed Transfer Function is sufficient to accurately classify the state of wakefulness in patients undergoing sevoflurane anesthesia in accordance with the clinician's judgement. FENS; 2018
Juel, Bjørn Erik; Kusztor, Aniko; Nilsen, Andre Sevenius; Farnes, Nadine; Larsson, Pål Gunnar; Romundstad, Luis Georg; Storm, Johan Frederik. Changes in electrophysiological markers of consciousness in response to various anesthetics. Nordic Neuroscience; 2017
Juel BE, Romundstad L, Kolstad F, Storm JF, Larsson PG. Distinguishing Anesthetized from Awake State in Patients: A New Approach Using One Second Segments of Raw EEG. Front Hum Neurosci. 2018 Feb 20;12:40. doi: 10.3389/fnhum.2018.00040. eCollection 2018.
Nadine Farnes, Bjørn Erik Juel, André Sevenius Nilsen, Luis Romundstad, Johan Fredrik Storm Increased signal diversity/complexity of spontaneous EEG in humans given sub-anaesthetic doses of ketamine. bioRXiv 2019 508697; doi: https://doi.org/10.1101/508697
Messner M, Beese U, Romstock J, Dinkel M, Tschaikowsky K. The bispectral index declines during neuromuscular block in fully awake persons. Anesth Analg. 2003 Aug;97(2):488-491. doi: 10.1213/01.ANE.0000072741.78244.C0.
Egerhazi A, Berecz R, Bartok E, Degrell I. Automated Neuropsychological Test Battery (CANTAB) in mild cognitive impairment and in Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2007 Apr 13;31(3):746-51. doi: 10.1016/j.pnpbp.2007.01.011. Epub 2007 Jan 16.
Punjasawadwong Y, Phongchiewboon A, Bunchungmongkol N. Bispectral index for improving anaesthetic delivery and postoperative recovery. Cochrane Database Syst Rev. 2014 Jun 17;2014(6):CD003843. doi: 10.1002/14651858.CD003843.pub3.
Masuda T, Yamada H, Takada K, Sagata Y, Yamaguchi M, Tomiyama Y, Oshita S. [Bispectral index monitoring is useful to reduce total amount of propofol and to obtain immediate recovery after propofol anesthesia]. Masui. 2002 Apr;51(4):394-9. Japanese.
Struys MM, De Smet T, Versichelen LF, Van De Velde S, Van den Broecke R, Mortier EP. Comparison of closed-loop controlled administration of propofol using Bispectral Index as the controlled variable versus "standard practice" controlled administration. Anesthesiology. 2001 Jul;95(1):6-17. doi: 10.1097/00000542-200107000-00007.
Tufano R, Palomba R, Lambiase G, Giurleo LG. [The utility of bispectral index monitoring in general anesthesia]. Minerva Anestesiol. 2000 May;66(5):389-93. Italian.
Sandin RH, Enlund G, Samuelsson P, Lennmarken C. Awareness during anaesthesia: a prospective case study. Lancet. 2000 Feb 26;355(9205):707-11. doi: 10.1016/S0140-6736(99)11010-9.
Sebel PS, Bowdle TA, Ghoneim MM, Rampil IJ, Padilla RE, Gan TJ, Domino KB. The incidence of awareness during anesthesia: a multicenter United States study. Anesth Analg. 2004 Sep;99(3):833-839. doi: 10.1213/01.ANE.0000130261.90896.6C.
Orser BA, Mazer CD, Baker AJ. Awareness during anesthesia. CMAJ. 2008 Jan 15;178(2):185-8. doi: 10.1503/cmaj.071761. Epub 2007 Dec 11. No abstract available.
Pollard RJ, Coyle JP, Gilbert RL, Beck JE. Intraoperative awareness in a regional medical system: a review of 3 years' data. Anesthesiology. 2007 Feb;106(2):269-74. doi: 10.1097/00000542-200702000-00014.
Errando CL, Sigl JC, Robles M, Calabuig E, Garcia J, Arocas F, Higueras R, Del Rosario E, Lopez D, Peiro CM, Soriano JL, Chaves S, Gil F, Garcia-Aguado R. Awareness with recall during general anaesthesia: a prospective observational evaluation of 4001 patients. Br J Anaesth. 2008 Aug;101(2):178-85. doi: 10.1093/bja/aen144. Epub 2008 May 30.
Xu L, Wu AS, Yue Y. The incidence of intra-operative awareness during general anesthesia in China: a multi-center observational study. Acta Anaesthesiol Scand. 2009 Aug;53(7):873-82. doi: 10.1111/j.1399-6576.2009.02016.x. Epub 2009 Jun 3.
Lewis SR, Pritchard MW, Fawcett LJ, Punjasawadwong Y. Bispectral index for improving intraoperative awareness and early postoperative recovery in adults. Cochrane Database Syst Rev. 2019 Sep 26;9(9):CD003843. doi: 10.1002/14651858.CD003843.pub4.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol
Document Type: Informed Consent Form
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2019/32173
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.