CT-Based Changes in Bone and Marrow Among Patients on Oral Steroids
NCT ID: NCT04518722
Last Updated: 2026-01-09
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
12 participants
OBSERVATIONAL
2020-12-01
2026-01-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
The Effects of Inhaled Glucocorticoids on the Postmenopausal Skeleton
NCT02357277
Effects Of Oral Prednisolone On Bone Metabolism In Patients With Chronic Obstructive Pulmonary Disease
NCT00384306
Melatonin and Osteogenic Loading on Osteopenia
NCT04233112
Role of Cardiometabolic Risk Factors in Childhood Bone Development
NCT02355717
CT-Based Modeling of Bone Micro-Architecture and Fracture-Risk in COPD
NCT03534934
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_CONTROL
PROSPECTIVE
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
CT Scan
Dual-energy mid-tibia CT, high-resolution single energy MDCT imaging of the distal tibia (ankle), and low radiation hip CT scans
DXA Scan
Basic DXA scans will be performed to measure areal BMD and body composition measures at the whole body, spine, and hip
Steroid Intake Questionnaire
Questionnaire designed to quantify lifetime oral glucocorticoid intake
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Diagnosis of severe, persistent asthma (defined as using both a long-acting beta-agonist AND a high-dose inhaled steroid)
* Age 25-45
* Inclusion (oral steroid group):
* Chronic treatment with oral steroids for at least 45 days but less than 1 year
Exclusion Criteria
* Pregnant or breastfeeding
* History of any cancer, excluding non-melanoma skin cancer
* Currently receiving dialysis
* History of any lower extremity fracture
* Hip or knee replacement
* Non-ambulatory
* Greater than 10 pack-year smoking history
* BMI \> 50
* Age \< 25 or \> 45
* Current or past use of FDA-approved medication for osteoporosis:
Bisphosphonates (Alendronate/Fosamax, Ibandronate/Boniva, Risedronate/Actonel/Atelvia, Zoledronic Acid/Reclast) Calcitonin (Fortical, Miacalcin) Selective Estrogen Receptor Modulator (Raloxifene/Evista) Parathyroid Hormone Analogue (Teriparatide/Forteo) Monoclonal Antibody (Denosumab/Prolia)
25 Years
45 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Iowa
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Punam K Saha
Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Punam K Saha, PhD
Role: PRINCIPAL_INVESTIGATOR
University of Iowa
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Iowa
Iowa City, Iowa, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C. Use of oral corticosteroids and risk of fractures. J Bone Miner Res. 2000 Jun;15(6):993-1000. doi: 10.1359/jbmr.2000.15.6.993.
Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007 Oct;18(10):1319-28. doi: 10.1007/s00198-007-0394-0. Epub 2007 Jun 14.
Clowes JA, Peel N, Eastell R. Glucocorticoid-induced osteoporosis. Curr Opin Rheumatol. 2001 Jul;13(4):326-32. doi: 10.1097/00002281-200107000-00015.
Wehrli FW, Saha PK, Gomberg BR, Song HK, Snyder PJ, Benito M, Wright A, Weening R. Role of magnetic resonance for assessing structure and function of trabecular bone. Top Magn Reson Imaging. 2002 Oct;13(5):335-55. doi: 10.1097/00002142-200210000-00005.
Barger-Lux MJ, Recker RR. Bone microstructure in osteoporosis: transilial biopsy and histomorphometry. Top Magn Reson Imaging. 2002 Oct;13(5):297-305. doi: 10.1097/00002142-200210000-00002.
Bell KL, Loveridge N, Power J, Garrahan N, Meggitt BF, Reeve J. Regional differences in cortical porosity in the fractured femoral neck. Bone. 1999 Jan;24(1):57-64. doi: 10.1016/s8756-3282(98)00143-4.
Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM. The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int. 1985 Dec;37(6):594-7. doi: 10.1007/BF02554913.
Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, Basle MF, Audran M. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res. 2000 Jan;15(1):13-9. doi: 10.1359/jbmr.2000.15.1.13.
Legrand E, Audran M, Guggenbuhl P, Levasseur R, Chales G, Basle MF, Chappard D. Trabecular bone microarchitecture is related to the number of risk factors and etiology in osteoporotic men. Microsc Res Tech. 2007 Nov;70(11):952-9. doi: 10.1002/jemt.20501.
Moore RJ, Durbridge TC, McNeil PJ, Parkinson IH, Need AG, Vernon-Roberts B. Trabecular spacing in post-menopausal Australian women with and without vertebral fractures. Aust N Z J Med. 1992 Jun;22(3):269-73. doi: 10.1111/j.1445-5994.1992.tb02124.x.
Mosekilde L. Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner. 1990 Jul;10(1):13-35. doi: 10.1016/0169-6009(90)90046-i.
Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest. 1983 Oct;72(4):1396-409. doi: 10.1172/JCI111096.
Parfitt AM. Implications of architecture for the pathogenesis and prevention of vertebral fracture. Bone. 1992;13 Suppl 2:S41-7. doi: 10.1016/8756-3282(92)90196-4.
Recker RR. Architecture and vertebral fracture. Calcif Tissue Int. 1993;53 Suppl 1:S139-42. doi: 10.1007/BF01673423.
Vesterby A, Gundersen HJ, Melsen F, Mosekilde L. Marrow space star volume in the iliac crest decreases in osteoporotic patients after continuous treatment with fluoride, calcium, and vitamin D2 for five years. Bone. 1991;12(1):33-7. doi: 10.1016/8756-3282(91)90052-k.
Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR; Osteoporotic Fractures Research Group. BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res. 2003 Nov;18(11):1947-54. doi: 10.1359/jbmr.2003.18.11.1947.
Li C, Jin D, Chen C, Letuchy EM, Janz KF, Burns TL, Torner JC, Levy SM, Saha PK. Automated cortical bone segmentation for multirow-detector CT imaging with validation and application to human studies. Med Phys. 2015 Aug;42(8):4553-65. doi: 10.1118/1.4923753.
Saha PK, Liu Y, Chen C, Jin D, Letuchy EM, Xu Z, Amelon RE, Burns TL, Torner JC, Levy SM, Calarge CA. Characterization of trabecular bone plate-rod microarchitecture using multirow detector CT and the tensor scale: Algorithms, validation, and applications to pilot human studies. Med Phys. 2015 Sep;42(9):5410-25. doi: 10.1118/1.4928481.
Chen C, Zhang X, Guo J, Jin D, Letuchy EM, Burns TL, Levy SM, Hoffman EA, Saha PK. Quantitative imaging of peripheral trabecular bone microarchitecture using MDCT. Med Phys. 2018 Jan;45(1):236-249. doi: 10.1002/mp.12632. Epub 2017 Nov 23.
Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2006 Jan;2(1):35-43. doi: 10.1038/ncprheum0070.
Bredella MA, Gill CM, Gerweck AV, Landa MG, Kumar V, Daley SM, Torriani M, Miller KK. Ectopic and serum lipid levels are positively associated with bone marrow fat in obesity. Radiology. 2013 Nov;269(2):534-41. doi: 10.1148/radiol.13130375. Epub 2013 Jul 16.
Bredella MA, Daley SM, Kalra MK, Brown JK, Miller KK, Torriani M. Marrow Adipose Tissue Quantification of the Lumbar Spine by Using Dual-Energy CT and Single-Voxel (1)H MR Spectroscopy: A Feasibility Study. Radiology. 2015 Oct;277(1):230-5. doi: 10.1148/radiol.2015142876. Epub 2015 May 19.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
202009045
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.