Convalescent Plasma in the Early Treatment of High-Risk Patients With SARS-CoV-2 (COVID-19) Infection

NCT ID: NCT04513158

Last Updated: 2024-10-24

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

TERMINATED

Clinical Phase

PHASE2

Total Enrollment

2 participants

Study Classification

INTERVENTIONAL

Study Start Date

2020-08-14

Study Completion Date

2021-04-28

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

This study proposes to evaluate the therapeutic efficacy, immunologic effects and normalization of laboratory parameters for patients at high risk for mortality when infected by SARS-CoV-2 (COVID-19) when administered one unit (approximately 200 mL) of convalescent plasma administered over a period of one hour. Following administration of the convalescent plasma, physical exam/clinical assessment information is collected daily and routine lab result data is collected every three days.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Following the administration of one unit (approximately 200 mL) of convalescent plasma over one hour, the study proposes to determine the therapeutic efficacy (response rate) of convalescent plasma infusion in patients at high risk for mortality when infected by SARS-CoV-2 (COVID-19) by prevention of progression to severe or life threatening COVID-19 during the current hospitalization as determined by evaluating if the patient experienced the following the following: respiratory rate \>30/min, Blood oxygen saturation \<93%, partial pressure of arterial oxygen to fraction of inspired oxygen ration \<300, or received a medical diagnosis of respiratory failure, septic shock or multiple organ dysfunction/failure. This will be captured from the daily physical exam/clinical assessment done as part of routine care and at discharge.

The study also proposes to determine the immunologic effects of convalescent plasma infusion as measured by serial SARS-CoV-2 Ag levels through RT-PCR measured by CoV PCR collected at enrollment, day 7 and discharge.

Finally, the study intends to measure normalization of laboratory parameters for risk which will be documented every 3 days while the patient is hospitalized until the time that lab value returns to within the institution's normal range.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Covid19

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

All hospitalized patients meeting study inclusion/exclusion criteria and providing informed consent for participation in the study will receive one unit (approximately 200 mL) of convalescent plasma over one hour to with data collection of routine physical exams/clinical assessments (daily) and routine lab results (every 3 days).
Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Treatment Arm

Study is single arm all patients hospitalized meeting inclusion/exclusion criteria and providing informed consent to receive one unit (approximately 200 mL) of convalescent plasma with data collected daily on routine (non-research) clinical assessments/physical exams and lab results.

Group Type EXPERIMENTAL

Convalescent Plasma

Intervention Type BIOLOGICAL

Plasma obtained from individuals previously diagnosed with SARS-CoV-2 (COVID-19) is administered to hospitalized patients meeting inclusion/exclusion criteria and have provided informed consent.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Convalescent Plasma

Plasma obtained from individuals previously diagnosed with SARS-CoV-2 (COVID-19) is administered to hospitalized patients meeting inclusion/exclusion criteria and have provided informed consent.

Intervention Type BIOLOGICAL

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Diagnosis of SARS-CoV-2 infection via RT-PCR or FDA approved testing.
* Patients must also have the following indications for enrollment:
* i. D-Dimer \> 500 ng/ml FEU OR
* ii. IL-6\> 5 pg/mL

With any of the following:

* iii. Lymphocytes \< 0.8 103/ul OR
* iv. LDH \> 700 U/L OR
* v. CK \> 170 U/L OR
* vi. CRP \> 1.0 mg/dl OR
* vii. Ferritin \> 1000 ng/ml

AND one of the following:

* viii. Age over 60 years
* ix. Underlying Active Malignancy
* x. Cardiovascular Disease
* xi. Active Tobacco Use
* xii. History of Pulmonary Volume Reduction Surgery
* xiii. Hypertension
* Prior Treatment: Patients are still eligible for this trial if active antimicrobial agents are in use. Patients are also eligible if they had been treated on COVID-19 clinical trial in the course of their disease.
* Age ≥ 18 years.
* The effects of allogeneic plasma infusion on the developing fetus is unknown. For this reason women who are pregnant are not eligible to participate.
* Agrees to required laboratory data collected which will include the baseline organ function and regular ongoing assessments done as part of routine care.
* Ability to understand and the willingness to sign a written informed consent document or ability to have consent provided by Legally Authorized Representative.

* 4.2.2 Patients may not be receiving any other investigational agents.
* 4.2.3 History of allergic reactions attributed to previous transfusion history.
* 4.2.4 Respiratory rate \>30/min
* 4.2.5 Blood oxygen saturation \<93%
* 4.2.6 Partial pressure of arterial oxygen to fraction of inspired oxygen ration \<300
* 4.2.7 Diagnosis of respiratory failure, septic shock or multiple organ dysfunction/failure
Minimum Eligible Age

18 Years

Maximum Eligible Age

99 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Joseph M. Flynn, D.O., MPH

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Joseph M. Flynn, D.O., MPH

Principal Investigator

Responsibility Role SPONSOR_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Joseph M Flynn, DO, MPH

Role: PRINCIPAL_INVESTIGATOR

Norton Healthcare

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Norton Hospital

Louisville, Kentucky, United States

Site Status

Norton Women's and Children's Hospital

Louisville, Kentucky, United States

Site Status

Norton Audubon Hospital

Louisville, Kentucky, United States

Site Status

Norton Brownsboro Hospital

Louisville, Kentucky, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020 Apr 7;323(13):1239-1242. doi: 10.1001/jama.2020.2648. No abstract available.

Reference Type BACKGROUND
PMID: 32091533 (View on PubMed)

Bonow RO, Fonarow GC, O'Gara PT, Yancy CW. Association of Coronavirus Disease 2019 (COVID-19) With Myocardial Injury and Mortality. JAMA Cardiol. 2020 Jul 1;5(7):751-753. doi: 10.1001/jamacardio.2020.1105. No abstract available.

Reference Type BACKGROUND
PMID: 32219362 (View on PubMed)

Rodriguez-Morales AJ, Cardona-Ospina JA, Gutierrez-Ocampo E, Villamizar-Pena R, Holguin-Rivera Y, Escalera-Antezana JP, Alvarado-Arnez LE, Bonilla-Aldana DK, Franco-Paredes C, Henao-Martinez AF, Paniz-Mondolfi A, Lagos-Grisales GJ, Ramirez-Vallejo E, Suarez JA, Zambrano LI, Villamil-Gomez WE, Balbin-Ramon GJ, Rabaan AA, Harapan H, Dhama K, Nishiura H, Kataoka H, Ahmad T, Sah R; Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19). Electronic address: https://www.lancovid.org. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020 Mar-Apr;34:101623. doi: 10.1016/j.tmaid.2020.101623. Epub 2020 Mar 13.

Reference Type BACKGROUND
PMID: 32179124 (View on PubMed)

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 Mar 28;395(10229):1054-1062. doi: 10.1016/S0140-6736(20)30566-3. Epub 2020 Mar 11.

Reference Type BACKGROUND
PMID: 32171076 (View on PubMed)

The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) - China, 2020. China CDC Wkly. 2020 Feb 21;2(8):113-122. No abstract available.

Reference Type BACKGROUND
PMID: 34594836 (View on PubMed)

Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020 May;8(5):475-481. doi: 10.1016/S2213-2600(20)30079-5. Epub 2020 Feb 24.

Reference Type BACKGROUND
PMID: 32105632 (View on PubMed)

Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, Wang X, Yuan J, Li T, Li J, Qian S, Hong C, Wang F, Liu Y, Wang Z, He Q, Li Z, He B, Zhang T, Fu Y, Ge S, Liu L, Zhang J, Xia N, Zhang Z. Antibody Responses to SARS-CoV-2 in Patients With Novel Coronavirus Disease 2019. Clin Infect Dis. 2020 Nov 19;71(16):2027-2034. doi: 10.1093/cid/ciaa344.

Reference Type BACKGROUND
PMID: 32221519 (View on PubMed)

Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect. 2020 Jun;53(3):436-443. doi: 10.1016/j.jmii.2020.03.034. Epub 2020 Apr 4.

Reference Type BACKGROUND
PMID: 32307245 (View on PubMed)

Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, Greninger AL, Pipavath S, Wurfel MM, Evans L, Kritek PA, West TE, Luks A, Gerbino A, Dale CR, Goldman JD, O'Mahony S, Mikacenic C. Covid-19 in Critically Ill Patients in the Seattle Region - Case Series. N Engl J Med. 2020 May 21;382(21):2012-2022. doi: 10.1056/NEJMoa2004500. Epub 2020 Mar 30.

Reference Type BACKGROUND
PMID: 32227758 (View on PubMed)

Baron SA, Devaux C, Colson P, Raoult D, Rolain JM. Teicoplanin: an alternative drug for the treatment of COVID-19? Int J Antimicrob Agents. 2020 Apr;55(4):105944. doi: 10.1016/j.ijantimicag.2020.105944. Epub 2020 Mar 13.

Reference Type BACKGROUND
PMID: 32179150 (View on PubMed)

Mair-Jenkins J, Saavedra-Campos M, Baillie JK, Cleary P, Khaw FM, Lim WS, Makki S, Rooney KD, Nguyen-Van-Tam JS, Beck CR; Convalescent Plasma Study Group. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015 Jan 1;211(1):80-90. doi: 10.1093/infdis/jiu396. Epub 2014 Jul 16.

Reference Type BACKGROUND
PMID: 25030060 (View on PubMed)

Lim VW, Tudor Car L, Leo YS, Chen MI, Young B. Passive immune therapy and other immunomodulatory agents for the treatment of severe influenza: Systematic review and meta-analysis. Influenza Other Respir Viruses. 2020 Mar;14(2):226-236. doi: 10.1111/irv.12699. Epub 2019 Nov 16.

Reference Type BACKGROUND
PMID: 31733048 (View on PubMed)

Cheng Y, Wong R, Soo YO, Wong WS, Lee CK, Ng MH, Chan P, Wong KC, Leung CB, Cheng G. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis. 2005 Jan;24(1):44-6. doi: 10.1007/s10096-004-1271-9.

Reference Type BACKGROUND
PMID: 15616839 (View on PubMed)

van Griensven J, Edwards T, de Lamballerie X, Semple MG, Gallian P, Baize S, Horby PW, Raoul H, Magassouba N, Antierens A, Lomas C, Faye O, Sall AA, Fransen K, Buyze J, Ravinetto R, Tiberghien P, Claeys Y, De Crop M, Lynen L, Bah EI, Smith PG, Delamou A, De Weggheleire A, Haba N; Ebola-Tx Consortium. Evaluation of Convalescent Plasma for Ebola Virus Disease in Guinea. N Engl J Med. 2016 Jan 7;374(1):33-42. doi: 10.1056/NEJMoa1511812.

Reference Type BACKGROUND
PMID: 26735992 (View on PubMed)

Arabi Y, Balkhy H, Hajeer AH, Bouchama A, Hayden FG, Al-Omari A, Al-Hameed FM, Taha Y, Shindo N, Whitehead J, Merson L, AlJohani S, Al-Khairy K, Carson G, Luke TC, Hensley L, Al-Dawood A, Al-Qahtani S, Modjarrad K, Sadat M, Rohde G, Leport C, Fowler R. Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol. Springerplus. 2015 Nov 19;4:709. doi: 10.1186/s40064-015-1490-9. eCollection 2015.

Reference Type BACKGROUND
PMID: 26618098 (View on PubMed)

Zhou G, Zhao Q. Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int J Biol Sci. 2020 Mar 15;16(10):1718-1723. doi: 10.7150/ijbs.45123. eCollection 2020.

Reference Type BACKGROUND
PMID: 32226289 (View on PubMed)

Casadevall A, Pirofski LA. The convalescent sera option for containing COVID-19. J Clin Invest. 2020 Apr 1;130(4):1545-1548. doi: 10.1172/JCI138003. No abstract available.

Reference Type BACKGROUND
PMID: 32167489 (View on PubMed)

Hung IF, To KK, Lee CK, Lee KL, Chan K, Yan WW, Liu R, Watt CL, Chan WM, Lai KY, Koo CK, Buckley T, Chow FL, Wong KK, Chan HS, Ching CK, Tang BS, Lau CC, Li IW, Liu SH, Chan KH, Lin CK, Yuen KY. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis. 2011 Feb 15;52(4):447-56. doi: 10.1093/cid/ciq106. Epub 2011 Jan 19.

Reference Type BACKGROUND
PMID: 21248066 (View on PubMed)

Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis. 2020 Apr;20(4):398-400. doi: 10.1016/S1473-3099(20)30141-9. Epub 2020 Feb 27. No abstract available.

Reference Type BACKGROUND
PMID: 32113510 (View on PubMed)

Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, Wei J, Xiao H, Yang Y, Qu J, Qing L, Chen L, Xu Z, Peng L, Li Y, Zheng H, Chen F, Huang K, Jiang Y, Liu D, Zhang Z, Liu Y, Liu L. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. 2020 Apr 28;323(16):1582-1589. doi: 10.1001/jama.2020.4783.

Reference Type BACKGROUND
PMID: 32219428 (View on PubMed)

Robeck J. Convalescent Plasma to Treat COVID-19. JAMA - J Am Med Assoc. 2020;Mar 27(Published online).

Reference Type BACKGROUND

Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C, Yuan M, Huang J, Wang Z, Yu J, Gao X, Wang D, Yu X, Li L, Zhang J, Wu X, Li B, Xu Y, Chen W, Peng Y, Hu Y, Lin L, Liu X, Huang S, Zhou Z, Zhang L, Wang Y, Zhang Z, Deng K, Xia Z, Gong Q, Zhang W, Zheng X, Liu Y, Yang H, Zhou D, Yu D, Hou J, Shi Z, Chen S, Chen Z, Zhang X, Yang X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9490-9496. doi: 10.1073/pnas.2004168117. Epub 2020 Apr 6.

Reference Type BACKGROUND
PMID: 32253318 (View on PubMed)

Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020 May;46(5):846-848. doi: 10.1007/s00134-020-05991-x. Epub 2020 Mar 3. No abstract available.

Reference Type BACKGROUND
PMID: 32125452 (View on PubMed)

Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang X, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020 May 1;130(5):2620-2629. doi: 10.1172/JCI137244.

Reference Type BACKGROUND
PMID: 32217835 (View on PubMed)

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020 Mar 17;323(11):1061-1069. doi: 10.1001/jama.2020.1585.

Reference Type BACKGROUND
PMID: 32031570 (View on PubMed)

Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H, Yang B, Huang C. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020 Jul 1;5(7):802-810. doi: 10.1001/jamacardio.2020.0950.

Reference Type BACKGROUND
PMID: 32211816 (View on PubMed)

Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiol. 2020 Jul 1;5(7):831-840. doi: 10.1001/jamacardio.2020.1286.

Reference Type BACKGROUND
PMID: 32219363 (View on PubMed)

Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, Lee M. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020 Apr 28;323(16):1612-1614. doi: 10.1001/jama.2020.4326.

Reference Type BACKGROUND
PMID: 32191259 (View on PubMed)

Liu W, Tao ZW, Wang L, Yuan ML, Liu K, Zhou L, Wei S, Deng Y, Liu J, Liu HG, Yang M, Hu Y. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J (Engl). 2020 May 5;133(9):1032-1038. doi: 10.1097/CM9.0000000000000775.

Reference Type BACKGROUND
PMID: 32118640 (View on PubMed)

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24.

Reference Type BACKGROUND
PMID: 31986264 (View on PubMed)

Gao Y, Li T, Han M, Li X, Wu D, Xu Y, Zhu Y, Liu Y, Wang X, Wang L. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020 Jul;92(7):791-796. doi: 10.1002/jmv.25770. Epub 2020 Apr 10.

Reference Type BACKGROUND
PMID: 32181911 (View on PubMed)

Liang W, Guan W, Chen R, Wang W, Li J, Xu K, Li C, Ai Q, Lu W, Liang H, Li S, He J. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020 Mar;21(3):335-337. doi: 10.1016/S1470-2045(20)30096-6. Epub 2020 Feb 14. No abstract available.

Reference Type BACKGROUND
PMID: 32066541 (View on PubMed)

Chan JW, Ng CK, Chan YH, Mok TY, Lee S, Chu SY, Law WL, Lee MP, Li PC. Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS). Thorax. 2003 Aug;58(8):686-9. doi: 10.1136/thorax.58.8.686.

Reference Type BACKGROUND
PMID: 12885985 (View on PubMed)

Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang YQ, Wang Q, Miao H. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020 Mar 27;5(1):33. doi: 10.1038/s41392-020-0148-4. No abstract available.

Reference Type BACKGROUND
PMID: 32296069 (View on PubMed)

Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang YQ, Wang Q, Miao H. Correction: Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020 Apr 29;5(1):61. doi: 10.1038/s41392-020-0159-1. eCollection 2020.

Reference Type BACKGROUND
PMID: 32377400 (View on PubMed)

Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, Akdis CA, Gao YD. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020 Jul;75(7):1730-1741. doi: 10.1111/all.14238. Epub 2020 Feb 27.

Reference Type BACKGROUND
PMID: 32077115 (View on PubMed)

Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, Bi Z, Zhao Y. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020 May;109(5):531-538. doi: 10.1007/s00392-020-01626-9. Epub 2020 Mar 11.

Reference Type BACKGROUND
PMID: 32161990 (View on PubMed)

Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020 May;17(5):259-260. doi: 10.1038/s41569-020-0360-5.

Reference Type BACKGROUND
PMID: 32139904 (View on PubMed)

Emami A, Javanmardi F, Pirbonyeh N, Akbari A. Prevalence of Underlying Diseases in Hospitalized Patients with COVID-19: a Systematic Review and Meta-Analysis. Arch Acad Emerg Med. 2020 Mar 24;8(1):e35. eCollection 2020.

Reference Type BACKGROUND
PMID: 32232218 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol and Statistical Analysis Plan

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

20-N0124

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Use of Convalescent Plasma for COVID-19
NCT04408040 TERMINATED PHASE2
Convalescent Plasma for COVID-19 Patients
NCT04516954 COMPLETED EARLY_PHASE1