Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
140 participants
OBSERVATIONAL
2018-08-08
2021-02-28
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effectiveness of a Mobile Neurofeedback for ADHD Youth
NCT04469335
NeuroLex EEG-Based ADHD Assessment Aid, Pivotal Study
NCT00595751
Quantitative EEG Neurofeedback as an Add-on Therapy For Attention-deficit Hyperactivity Disorder (ADHD)
NCT05635318
Study of Attention Deficit/Hyperactivity Disorder Using Transcranial Magnetic Stimulation
NCT00001915
Disturbed Structural Connectivity of Frontostriatal and Frontoparietal Networks in Adults With ADHD
NCT02232464
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_ONLY
RETROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
ADHD
electroencephalography absolute delta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative delta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography absolute theta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative theta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography absolute slow alpha power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative slow alpha power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography absolute fast alpha power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative fast alpha power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography absolute beta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative beta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
Korean ADHD rating scale
The KARS is a standardized screening tool for ADHD in Korean children and rating scale completed by the parents.
Korean Version of Diagnostic Interview Schedule for Children Version IV
The DISC-IV is a structured diagnostic tool that was developed for use in epidemiological studies in children and adolescents
NT NeuroTypical
electroencephalography absolute delta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative delta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography absolute theta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative theta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography absolute slow alpha power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative slow alpha power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography absolute fast alpha power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative fast alpha power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography absolute beta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative beta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
Korean ADHD rating scale
The KARS is a standardized screening tool for ADHD in Korean children and rating scale completed by the parents.
Korean Version of Diagnostic Interview Schedule for Children Version IV
The DISC-IV is a structured diagnostic tool that was developed for use in epidemiological studies in children and adolescents
ADHD NOS
electroencephalography absolute delta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative delta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography absolute theta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative theta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography absolute slow alpha power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative slow alpha power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography absolute fast alpha power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative fast alpha power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography absolute beta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative beta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
Korean ADHD rating scale
The KARS is a standardized screening tool for ADHD in Korean children and rating scale completed by the parents.
Korean Version of Diagnostic Interview Schedule for Children Version IV
The DISC-IV is a structured diagnostic tool that was developed for use in epidemiological studies in children and adolescents
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
electroencephalography absolute delta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative delta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography absolute theta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative theta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography absolute slow alpha power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative slow alpha power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography absolute fast alpha power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative fast alpha power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography absolute beta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
electroencephalography relative beta power
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
Korean ADHD rating scale
The KARS is a standardized screening tool for ADHD in Korean children and rating scale completed by the parents.
Korean Version of Diagnostic Interview Schedule for Children Version IV
The DISC-IV is a structured diagnostic tool that was developed for use in epidemiological studies in children and adolescents
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* Children with an IQ of 70 or lower according to the Korean-Wechsler Intelligence Scale for Children (Fourth Edition) or who were receiving drug treatment were also excluded from this study
7 Years
12 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Daegu Catholic University Medical Center
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Junwon Kim
Clinical professor
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Daegu Catholic University Medical Center
Daegu, Nam-gu, South Korea
Countries
Review the countries where the study has at least one active or historical site.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
CR-18-096
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.