The Clinical Value of the Nitric Oxide System Components in Asthma and COPD
NCT ID: NCT04456491
Last Updated: 2023-07-21
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
240 participants
OBSERVATIONAL
2021-09-01
2025-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Chronic Obstructive Pulmonary Disease in Combination With Atherosclerosis (Clinical and Biochemical Study)
NCT04474717
Observational Multicenter Non-interventional Study on COPD Patients Treatment Strategies at the Time of Hospital Discharge and Within 12 Months of Follow-up on an Outpatient Primary Care Basement
NCT02346292
Non-interventional Study of Spirometry Use to Diagnose COPD (Chronic Obstructive Pulmonary Disease) and to Prescribe Treatment to COPD Patients in the Outpatient Institutions
NCT02248909
Respiratory Pathogens of Patients With Asthma and COPD Exacerbations
NCT02866357
Intestinal Microbiota in COPD and Asthma
NCT04802317
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
A promising direction in the search for biomarkers related to the nitric oxide system is the study of L-arginine, which acts as a substrate in the reaction of NO formation. The bioavailability of L-arginine for NO synthases determines the activity of formation of nitric oxide in the respiratory tract, as evidenced by the effect of inhaled L-arginine on the level of exhaled fraction of nitric oxide. Earlier, in a US study, 26 patients with bronchial asthma showed a significant decrease in plasma L-arginine levels compared with healthy volunteers, and laboratory animal models showed that a decrease in L-arginine levels leads to airway hyperreactivity. Currently, a number of pilot clinical interventional studies have been carried out in which the administration of L-arginine improved the manifestations of bronchial asthma in some patients, but did not change the frequency of exacerbations in the total sample of patients. This indicates the possible existence of an endotype of bronchial asthma associated with impaired functioning of the nitric oxide system, and makes it promising to study the level of L-arginine in the blood as a potential biomarker of obstructive lung diseases.
In addition to studying nitric oxide metabolites, substances that affect the formation of NO should be considered as potential biomarkers of the disease. One such substance is arginase, under the influence of which L-arginine is converted into L-ornithine and urea. In humans, two isoenzymes of arginase, arginase 1 and arginase 2, have been identified, which differ in cellular location and tissue distribution. Both arginase enzymes are expressed in the airways and can be found in endothelial and epithelial cells, fibroblasts, macrophages, and smooth muscle cells of the respiratory tract. Further metabolism of L-ornithine leads to the formation of polyamines and L-proline, which are involved in cell proliferation and differentiation, as well as in the production of collagen. Scientists have shown that increased arginase activity in the airways contributes to airway obstruction and hyperreactivity by decreasing the availability substrate for NOS. As a result, the production of NO decreases and superoxides form, which react with NO to form peroxynitrite, thereby increasing airway contractility and inflammation. In addition, increased airway arginase activity leads to an increase in L-ornithine production, which potentially contributes to airway remodeling due to stimulation of cell proliferation and collagen formation.
The metabolism of L-arginine depends not only on arginase, but also on the methyltransferase enzyme, which methylates L-arginine residues, which undergo proteolysis with the formation of asymmetric and symmetric dimethylarginine (ADMA and SDMA). These amino acids inhibit NOS activity, since ADMA is a competitive inhibitor of the enzyme, while SDMA is a competitor to L-arginine transport. Serum ADMA and SDMA, as well as L-arginine concentrations increase with COPD and increase further with the development of exacerbation. It is important to note that the concentration of ADMA in blood serum is probably an independent risk factor for long-term mortality from all causes in obstructive lung diseases and is associated with increased airway resistance. In recent years, several studies have been conducted examining the association of ADMA with obstructive lung diseases. Earlier the association of ADMA with the development of obstructive lung diseases, airway resistance and indicators of the function of external respiration in patients with obstructive lung diseases was shown.
Thus, there are prerequisites for studying the components of the nitric oxide system, such as metabolites of nitric oxide, L-arginine, arginase, and asymmetric dimethylarginine, as a biomarker of obstructive lung diseases. Based on this, it is planned to study of nitric oxide metabolites (nitrates and nitrites), L-arginine, arginase-1, and asymmetric dimethylarginine in patients with bronchial asthma and chronic obstructive pulmonary disease, followed by observation to assess the prognosis of the disease.
The study is aimed at studying the clinical value of the nitric oxide synthesis modulators (L-arginine, arginase-1 and asymmetric dimethylarginine) in patients with bronchial asthma and chronic obstructive pulmonary disease, as well as assessing their effect on the prognosis and the course of diseases .
The study objectives is
1. To assess the levels of modulators of the synthesis of nitric oxide (L-arginine, arginase-1 and asymmetric dimethylarginine) in the blood of patients with asthma and chronic obstructive pulmonary disease and their relationship with the clinical course of the disease.
2. To evaluate the clinical value of the ratio of the levels of modulators of the synthesis of nitric oxide (L-arginine, arginase-1 and asymmetric dimethylarginine) and the level of metabolites of nitric oxide (nitrates and nitrites) in patients with bronchial asthma and chronic obstructive pulmonary disease.
3. To assess the possibility of using the determination of the levels of modulators of nitric oxide synthesis to predict the course of obstructive lung diseases and prevent the development of exacerbations of bronchial asthma and chronic obstructive pulmonary disease.
4. To assess the possibility of developing personalized treatment regimens for obstructive lung diseases, based on the assesment of the levels of modulators of the synthesis of nitric oxide (L-arginine, arginase-1 and asymmetric dimethylarginine) in the blood of patients with asthma and chronic obstructive pulmonary disease.
It is planned to conduct a prospective case-control study in the three study groups. To all patients will be performed: general clinical examination; Test of Adherence to Inhalers; clinical and biochemical analysis of the blood; spirometry; assesment of the level of nitric oxide metabolites in serum using the photocolorimetric method in Griss reaction; assesment of the level of L-arginine, arginase-1 and asymmetric dimethylarginine in serum by enzyme immunoassay using the laboratory kit Immundiagnostik (Germany). At the second phase of the study, lasting 2 years, the prognostic capabilities of assesment the levels of modulators of nitric oxide synthesis will be evaluated using a combined endpoint, included increase in level of basis therapy, exacerbation, hospitalisation and mors associated with Asthma and COPD.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_CONTROL
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Asthma
Patients with Asthma
No interventions assigned to this group
COPD
Patients with COPD
No interventions assigned to this group
Control group
Healthy volunteers
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* a diagnosis of asthma or chronic obstructive pulmonary disease according to actual GINA and GOLD guidelines
Exclusion Criteria
* history of liver dysfunction accompanied by an increase in ALT, AST or total bilirubin more than 3 times higher than the upper limit of normal;
* history of severe renal impairment, accompanied by a decrease in glomerular filtration rate below 60 ml/min (according to CKD-EPI);
* abuse on psychoactive substances and / or alcohol.
18 Years
70 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Ryazan State Medical University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Anton Shakhanov, MD, Cand.Sci. (Med.)
Role: PRINCIPAL_INVESTIGATOR
Ryazan State Medical University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Department of Therapy
Ryazan, Ryazanskaya Obl., Russia
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Anton Shakhanov, MD, PhD
Role: primary
Zharkyniai Kanatbekova, MD
Role: backup
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
ASCONO
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.